如圖所示,⊙和⊙外切于點A,外公切線BC、DE分別與⊙、⊙切于點B、C和D、E,并相交于P,且,則⊙與⊙半徑的比是

[  ]

A.1∶2  B.1∶3  C.2∶3  D.3∶4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,⊙O1和⊙O2外切于A,BC是⊙O1和⊙O2的公切線,B、C是切點,求證:AB⊥AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•畢節(jié)地區(qū))如圖所示,⊙O1和⊙O2外切于點C,AB是⊙O1和⊙O2的外公切線,A、B為切點,且∠ACB=90°.以AB所在直線為軸,過點C且垂直于AB的直線為軸建立直角坐標系,已知AO=4,OB=1.
(1)分別求出A、B、C各點的坐標;
(2)求經(jīng)過A、B、C三點的拋物線y=ax2+bx+c的解析式;
(3)如果⊙O1的半徑是5,問這條拋物線的頂點是否落在兩圓連心線O1 O2上?如果在,請證明;如果不在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,⊙O1和⊙O2外切于點A,AB是⊙O1的直徑,BD切⊙O2于點D,交⊙O1O2
于點C,求證:AB•CD=AC•BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,⊙O1和⊙O2外切于點C,AB是⊙O1和⊙O2的外公切線,A、B為切點,且∠ACB=90°.以AB所在直線為軸,過點C且垂直于AB的直線為軸建立直角坐標系,已知AO=4,OB=1.
(1)分別求出A、B、C各點的坐標;
(2)求經(jīng)過A、B、C三點的拋物線y=ax2+bx+c的解析式;
(3)如果⊙O1的半徑是5,問這條拋物線的頂點是否落在兩圓連心線O1 O2上?如果在,請證明;如果不在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年貴州省畢節(jié)地區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,⊙O1和⊙O2外切于點C,AB是⊙O1和⊙O2的外公切線,A、B為切點,且∠ACB=90°.以AB所在直線為軸,過點C且垂直于AB的直線為軸建立直角坐標系,已知AO=4,OB=1.
(1)分別求出A、B、C各點的坐標;
(2)求經(jīng)過A、B、C三點的拋物線y=ax2+bx+c的解析式;
(3)如果⊙O1的半徑是5,問這條拋物線的頂點是否落在兩圓連心線O1 O2上?如果在,請證明;如果不在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案