【題目】如圖,已知ABCADE都是等腰直角三角形,∠ACB=ADE=90°,點FBE的中點,連接CF,DF.

(1)如圖1,當點DAB上,點EAC上時

①證明:BFC是等腰三角形;

②請判斷線段CF,DF的關(guān)系?并說明理由;

(2)如圖2,將圖1中的ADE繞點A旋轉(zhuǎn)到圖2位置時,請判斷(1)中②的結(jié)論是否仍然成立?并證明你的判斷.

【答案】(1)①證明見解析;②結(jié)論:CF=DFCFDF.理由見解析;(2)(1)中的結(jié)論仍然成立.理由見解析.

【解析】分析:(1)、根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”可知CF=BF=EF,根據(jù)∠CFD=2∠ABC,ACB=90°,ABC=45°得出∠CFD=90°,從而得出答案;(2)、延長DFG使FG=DF,連接BG,CG,DC,首先證明△BFG和△EFD全等,然后再證明△BCG和△ACD全等,從而得出GC=DC,BCG=ACD,DCG=ACB=90°,最后根據(jù)直角三角形斜中線的性質(zhì)得出答案.

詳解:(1)①證明:∵∠BCE=90°.EF=FB,CF=BF=EF,∴△BFC是等腰三角形.

②解:結(jié)論:CF=DFCFDF.理由如下:

∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,點FBE的中點,∴CF=DF=BE=BF,

∴∠1=3,2=4,∴∠5=1+3=21,6=2+4=22,

∴∠CFD=5+6=2(1+2)=2ABC,

又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,

CF=DFCFDF.

(2)(1)中的結(jié)論仍然成立.理由如下:

如圖,延長DFG使FG=DF,連接BG,CG,DC,FBE的中點,∴BF=EF,

又∵∠BFG=EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=FED,BG=ED,

BGDE,∵△ADEACB都是等腰直角三角形,

DE=DA,DAE=DEA=45°,AC=BC,CAB=CBA=45°,

又∵∠CBG=EBG﹣EBA﹣ABC=DEF﹣(180°﹣AEB﹣EAB)﹣45°

=DEF﹣180°+AEB+EAB﹣45°=(DEF+AEB)+EAB﹣225°

=360°﹣DEA+EAB﹣225°=360°﹣45°+EAB﹣225°=90°+EAB,

而∠DAC=DAE+EAB+CAB=45°+EAB+45°=90°+EAB,

∴∠CBG=DAC,又∵BG=ED,DE=DA,BG=AD,又∵BC=AC,

∴△BCG≌△ACD(SAS),GC=DC,BCG=ACD,

∴∠DCG=DCB+BCG=DCB+ACD=ACB=90°,

∴△DCG是等腰直角三角形,又∵FDG的中點,∴CFDFCF=DF.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)a,bc在數(shù)軸上的位置如圖所示,請根據(jù)圖中信息,回答下列問題:

1abc三個數(shù)中,為正數(shù)的數(shù)是  ,為負數(shù)的數(shù)是 

2)將|a|,|b|,|c|三個數(shù)用不等號連接起來是  ;

3)化簡:|ba||b+c|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若關(guān)于x的一元二次方程ax2+bx+c=0a≠0)的兩個實數(shù)根為x1x2x1x2),分別以x1,x2為橫坐標和縱坐標得到點Mx1,x2),則稱點M為該一元二次方程的衍生點.

1)若方程為x2-2x=0,寫出該方程的衍生點M的坐標.

2)若關(guān)于x的一元二次方程x2-2m+1x+2m=0m0)的衍生點為M,過點Mx軸和y軸作垂線,兩條垂線與坐標軸恰好圍成一個正方形,求m的值.

3)是否存在b,c,使得不論kk≠0)為何值,關(guān)于x的方程x2+bx+c=0的衍生點M始終在直線y=kx-2k-2)的圖象上,若有請直接寫出b,c的值,若沒有說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全民健身運動已成為一種時尚,為了了解我市居民健身運動的情況,某健身館的工作人員開展了一項問卷調(diào)查,問卷包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團;D:散布;E:不運動.

以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.

運動形式

A

B

C

D

E

人數(shù)

12

30

m

54

9

請你根據(jù)以上信息,回答下列問題:

(1)接受問卷調(diào)查的共有   人,圖表中的m=   ,n=   ;

(2)統(tǒng)計圖中,A類所對應(yīng)的扇形圓心角的度數(shù)為   

(3)根據(jù)調(diào)查結(jié)果,我市市民最喜愛的運動方式是   ,不運動的市民所占的百分比是   

(4)我市碧沙崗公園是附近市民喜愛的運動場所之一,每晚都有暴走團活動,若最鄰近的某社區(qū)約有1500人,那么估計一下該社區(qū)參加碧沙崗暴走團的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A3,m),B﹣2,﹣3)是直線AB和某反比例函數(shù)的圖象的兩個交點.

1)求直線AB和反比例函數(shù)的解析式;

2)觀察圖象,直接寫出當x滿足什么范圍時,直線AB在雙曲線的下方;

3)反比例函數(shù)的圖象上是否存在點C,使得△OBC的面積等于△OAB的面積?如果不存在,說明理由;如果存在,求出滿足條件的所有點C的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象與y=x-1的圖象平行,且經(jīng)過點(2,6)

(1)求一次函數(shù)y=kx+b的表達式.

(2)求這個一次函數(shù)y=kx+b與坐標軸的兩個交點坐標,并在直角坐標系中畫出這個函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,點E,F(xiàn)分別在邊BC,AD上,且AF=CE.

(Ⅰ)如圖①,求證四邊形AECF是平行四邊形;

(Ⅱ)如圖②,若∠BAC=90°,且四邊形AECF是邊長為6的菱形,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD,AB=2AD,A0,1),CD在反比例函數(shù)k0)的圖象上,ABx軸的正半軸相交于點E,EAB的中點,k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在抗洪搶險中,解放軍戰(zhàn)士的沖鋒舟加滿油沿東西方向的河流搶救災(zāi)民,早晨從地出發(fā),晚上到達地,然后返回到出發(fā)地.約定向東為正方向,當天的航行路程記錄如下(單位:千米):

14,,13,

1)請你幫忙確定地在地的____________________千米處;

2)救災(zāi)過程中,沖鋒舟離出發(fā)點最遠處有多遠?

3)若沖鋒舟每千米耗油0.4升,油箱容量為30升,晚上沖鋒舟能回到出發(fā)地嗎?若能,請說明理由,若不能,求沖鋒舟至少還需補充多少升油?

查看答案和解析>>

同步練習冊答案