【題目】在△ABC中,AC=BC,∠ACB=90°,點D為AC的中點.
(1)如圖1,E為線段DC上任意一點,將線段DE繞點D逆時針旋轉(zhuǎn)90°得到線段DF,連接CF,過點F作FH⊥FC,交直線AB于點H.判斷FH與FC的數(shù)量關(guān)系并加以證明;
(2)如圖2,若E為線段DC的延長線上任意一點,(1)中的其他條件不變,你在(1)中得出的結(jié)論是否發(fā)生改變,直接寫出你的結(jié)論,不必證明.
【答案】(1)見解析(2)FH與FC仍然相等
【解析】
試題分析:(1)延長DF交AB于點G,根據(jù)三角形中位線的判定得出點G為AB的中點,根據(jù)中位線的性質(zhì)及已知條件AC=BC,得出DC=DG,從而EC=FG,易證∠1=∠2=90°﹣∠DFC,∠CEF=∠FGH=135°,由AAS證出△CEF≌△FGH.∴CF=FH.
(2)通過證明△CEF≌△FGH(ASA)得出.
解:(1)FH與FC的數(shù)量關(guān)系是:FH=FC.
證明如下:延長DF交AB于點G,
由題意,知∠EDF=∠ACB=90°,DE=DF,
∴DG∥CB,
∵點D為AC的中點,
∴點G為AB的中點,且,
∴DG為△ABC的中位線,
∴.
∵AC=BC,
∴DC=DG,
∴DC﹣DE=DG﹣DF,
即EC=FG.
∵∠EDF=90°,F(xiàn)H⊥FC,
∴∠1+∠CFD=90°,∠2+∠CFD=90°,
∴∠1=∠2.
∵△DEF與△ADG都是等腰直角三角形,
∴∠DEF=∠DGA=45°,
∴∠CEF=∠FGH=135°,
∴△CEF≌△FGH,
∴CF=FH.
(2)FH與FC仍然相等.
理由:由題意可得出:DF=DE,
∴∠DFE=∠DEF=45°,
∵AC=BC,
∴∠A=∠CBA=45°,
∵DF∥BC,
∴∠CBA=∠FGB=45°,
∴∠FGH=∠CEF=45°,
∵點D為AC的中點,DF∥BC,
∴DG=BC,DC=AC,
∴DG=DC,
∴EC=GF,
∵∠DFC=∠FCB,
∴∠GFH=∠FCE,
在△FCE和△HFG中
,
∴△FCE≌△HFG(ASA),
∴HF=FC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的長.
(2)如圖2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.兩條對角線相等的四邊形是矩形
B.兩條對角線互相垂直的四邊形是菱形
C.兩條對角線互相垂直且相等的四邊形是正方形
D.兩條對角線互相平分的四邊形是平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷中正確的是( )
A.長度相等的弧是等弧
B.平分弦的直線也必平分弦所對的兩條弧
C.弦的垂直平分線必平分弦所對的兩條弧
D.平分一條弧的直線必平分這條弧所對的弦
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某縣八年級學(xué)生的體重情況從中抽取了200名學(xué)生進(jìn)行體重測試.在這個問題中,下列說法錯誤的是( )
A.200學(xué)生的體重是總體
B.200學(xué)生的體重是一個樣本
C.每個學(xué)生的體重是個體
D.全縣八年級學(xué)生的體重是總體
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是邊CD的中點,連接BE并延長與AD的延長線相交于點F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com