兩個(gè)全等的含30°,60°角的三角板ADE和三角板ABC如圖所求放置,E,A,C三點(diǎn)在一條直線上,連接BD,取BD的中點(diǎn)肘,連接ME,MC,試判斷△EMC的形狀,并說明理由.
解:判斷:△EMC是等腰直角三角形,理由如下:連接AM,      
DAB =180EADCAB            
=180 306            
= 90     
 又∵DM= BM,
∵AM= DM =BM
又∵AD =AB,     
 ∴ADB= DBA,而DBA= MAB,即ADB= MAB.   
  ∴MDE=MAC.
MDE與MAC中,   
       
  ∴△MDE△MAC( SAS),即EM= CM, DME=CMA.     
 又∵DME+AME= 90,
CMA+AME= 90    
  即△EMC是等腰直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)兩個(gè)全等的含30°,60°角的三角板ADE和三角板ABC如圖所示放置,E,A,C三點(diǎn)在一條直線上,連接BD,取BD的中點(diǎn)M,連接ME,MC.試判斷△EMC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用兩個(gè)全等的含30°角的直角三角形制作如圖1所示的兩種卡片,兩種卡片中扇形的半徑均為1,且扇形所在圓的圓心分別為長(zhǎng)直角邊的中點(diǎn)和30°角的頂點(diǎn),按先A后B的順序交替擺放A、B兩種卡片得到圖2所示的圖案.若擺放這個(gè)圖案共用兩種卡片
8張,則這個(gè)圖案中陰影部分的面積之和為
π
π
; 若擺放這個(gè)圖案共用兩種卡片(2n+1)張( n為正整數(shù)),則這個(gè)圖案中陰影部分的面積之和為
3n+2
12
π
3n+2
12
π
.(結(jié)果保留π )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用兩個(gè)全等的含30°角的直角三角形制作如圖A、B所示的兩種卡片,兩種卡片中扇形的半徑均為2,且扇形所在圓的圓心分別為長(zhǎng)直角邊的中點(diǎn)和30°角的頂點(diǎn),按先A后B的順序交替擺放A、B兩種卡片得到如圖所示的圖案.若擺放這個(gè)圖案共用兩種卡片12張,則這個(gè)圖案中陰影部分的面積之和為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用兩個(gè)全等的含30°角的直角三角形,長(zhǎng)直角邊長(zhǎng)為2.制作如圖1所示的兩種卡片,兩種卡片中扇形的半徑均為1,且扇形所在圓的圓心分別為長(zhǎng)直角邊的中點(diǎn)和30°角的頂點(diǎn),按先A后B的順序交替擺放A、B兩種卡片得到圖2所示的圖案.若擺放這個(gè)圖案共用兩種卡片8張,則這個(gè)圖案中陰影部分的之和為
π
π
.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用兩個(gè)全等的含30°角的直角三角形制作如圖1所示的兩種卡片,兩種卡片中扇形的 半徑均為1, 且扇形所在圓的圓心分別為長(zhǎng)直角邊的中點(diǎn)和30°角的頂點(diǎn), 按先AB 的順序交替擺放A、B兩種卡片得到圖2所示的圖案. 若擺放這個(gè)圖案共用兩種卡片8張,則這個(gè)圖案中陰影部分的面積之和為           ; 若擺放這個(gè)圖案共用兩種卡片(2n+1)張( n為正整數(shù)), 則這個(gè)圖案中陰影部分的面積之和為         . (結(jié)果保留p )

 

查看答案和解析>>

同步練習(xí)冊(cè)答案