4、設(shè)a、b為兩圓半徑,c為圓心距,且方程x2-2ax+b2=c(b-a)有兩個(gè)相等的實(shí)數(shù)根,則這兩個(gè)圓( 。
分析:由方程有兩個(gè)相等的實(shí)數(shù)根,可得△=0,列式求解,再判斷兩圓的位置關(guān)系.
解答:解:由題意得,△=4a2-4(b2-bc+ac)=4a2-4b2+4bc-4ac=0,
即(a-b)(4a+4b-4c)=0,
∴a-b=0,或4a+4b-4c=0,
∴a=b,或4c=4a+4b,即c=a+b,
∴這兩個(gè)圓相等或外切.
故選D.
點(diǎn)評(píng):本題難度中等,主要是考查根的判別式,圓與圓的位置關(guān)系與數(shù)量關(guān)系間的聯(lián)系.此類(lèi)題為中考熱點(diǎn),需重點(diǎn)掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)R、r分別為兩圓半徑,兩圓外切時(shí)圓心距為5,兩圓內(nèi)切時(shí)圓心距為1,求R、r的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)R、r分別為兩圓半徑,兩圓外切時(shí)圓心距為5,兩圓內(nèi)切時(shí)圓心距為1,求R、r的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)a、b為兩圓半徑,c為圓心距,且方程x2-2ax+b2=c(b-a)有兩個(gè)相等的實(shí)數(shù)根,則這兩個(gè)圓( 。
A.相交B.內(nèi)切C.相等D.相等或外切

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市昌平區(qū)大東流中學(xué)九年級(jí)(上)月考數(shù)學(xué)試卷(9月份)(解析版) 題型:解答題

設(shè)R、r分別為兩圓半徑,兩圓外切時(shí)圓心距為5,兩圓內(nèi)切時(shí)圓心距為1,求R、r的值?

查看答案和解析>>

同步練習(xí)冊(cè)答案