已知,如圖,斜坡PQ坡度為i=1:
4
3
,坡腳Q旁的點(diǎn)N處有一棵大樹MN.近中午的某個(gè)時(shí)刻,太陽光線與水平線成50°,光線將樹頂M的影子照射在斜坡PQ上的點(diǎn)A處.如果AQ=5米,NQ=1米,求大樹MN的高度.(精確到0.1)(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)
考點(diǎn):解直角三角形的應(yīng)用-坡度坡角問題
專題:
分析:先延長MA交NQ與點(diǎn)B,過點(diǎn)A作AC⊥BQ,垂足為點(diǎn)C,設(shè)AC=x,則QC=
4
3
x,根據(jù)勾股定理得出x2+(
4
3
x)2=52,求出x的值,得出AC=3,再求出BC、NB,最后根據(jù)MNtan∠B•NB=代入計(jì)算即可.
解答:解:延長MA交NQ與點(diǎn)B,過點(diǎn)A作AC⊥BQ,垂足為點(diǎn)C,
∵PQ的坡度為i=1:
4
3

∴設(shè)AC=x,則QC=
4
3
x,
∴x2+(
4
3
x)2=52
解得:x1=3,x2=-3(不合題意,舍去),
∴AC=3,
∵∠B=50°,
∴BC=
AC
tan∠B
=
3
tan50°
,
∴NB=1+4+
3
tan50°
=5+
3
tan50°

∴MN=tan∠B•NB=tan50°×(5+
3
tan50°
)=5•tan50°+3=5×1.19+3=9.0(米).
點(diǎn)評(píng):此題考查了解直角三角形的應(yīng)用,用到的知識(shí)點(diǎn)是坡度、勾股定理、銳角三角函數(shù),關(guān)鍵是做出輔助線,構(gòu)造直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,D是AB上一點(diǎn),如圖∠B=∠ACD,AD=4cm,AC=6cm,S△ACD=8cm2,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,直線l過點(diǎn)A(-2,1),B(3,-4),試判斷點(diǎn)P(a+2,1-3a)是否在直線l上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

關(guān)于x、y的多項(xiàng)式6mx2+4nxy+2x+2xy-x2+y+4不含二次項(xiàng),求多項(xiàng)式2m2n+10m-4n+2-2m2n-4m+2n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:
1
4×8
+
1
8×12
+…+
1
2004×2008
+
1
2008×2012

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

利用平方差計(jì)算:(1+
1
2
)(1+
1
4
)(1+
1
16
)(1+
1
256

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)
4x
3y
×
y
2x3

(2)
ab2
2c2
÷
-3a2b2
4cd
;
(3)
24xy
7z
÷(-8xyz)
;
(4)(
a2b
c2
)3•(
-c2
a2b
)÷(
bc
a
)4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小明說:“如果將一大一小兩個(gè)等邊三角形放在一起,使它們有一個(gè)公共頂點(diǎn),如圖①,記作△ABC和△ADE,當(dāng)△ADE繞點(diǎn)A旋轉(zhuǎn)時(shí),能與△ABC構(gòu)成不同的圖形(如圖②、圖③、圖④).在各組圖形中分別連結(jié)BD和CE,都能那個(gè)找到全等三角形“
(1)請(qǐng)你在圖①、圖②、圖③、圖④中分別找出全等三角形,并說明三角形全等的理由;
(2)小明又說:“根據(jù)圖①、圖②、圖③、圖④,我們可以說,不論繞△ADE繞點(diǎn)A旋轉(zhuǎn)到任何位置,連結(jié)BD和CE后一定能找到全等三角形.“你認(rèn)為小明這個(gè)結(jié)論對(duì)嗎?如果不對(duì),請(qǐng)你畫出相應(yīng)圖形,并說明這時(shí)△ADE繞點(diǎn)A旋轉(zhuǎn)了多少度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

84°41′30″-47°30′÷6+4°12′50″×3=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案