已知二次函數(shù)y=ax2+bx+c(a>0)的圖象經過點C(0,1),且與x軸交于不同的兩點A、B,若點A的坐標是(1,0),點B在點A的右側.
(1)c=______;
(2)求a的取值范圍;
(3)若過點C且平行于x軸的直線交該拋物線于另一點D,AD、BC交于點P,記△PCD的面積為S1,△PAB的面積為S2,求S1-S2的值.
(1)將點C(0,1)代入二次函數(shù)y=ax2+bx+c(a>0),可得1=0+0+c,
解得c=1;

(2)將點A(1,0)代入二次函數(shù)y=ax2+bx+1(a>0),可得a+b+1=0,即b=-(a+1),
∵二次函數(shù)與x軸交于不同的兩點,
∴△=b2-4ac=(a-1)2>0,
∴a≠1,
∵點B在點A的右側,
∴對稱軸直線x=-
b
2a
>1.
∵a>0,
∴2a+b<0,
∴a<1,
∴a的取值范圍是:0<a<1;

(3)解方程:ax2-(a+1)x+1=0,
得:x1=1,x2=
1
a

∴AB=
1-a
a

把y=1代入y=ax2-(a+1)x+1,得x1=0,x2=
a+1
a

∴CD=
a+1
a

∵S1-S2=S△PCD-S△PAB=S△ACD-S△CAB,
∴S1-S2=
1
2
×
a+1
a
×1-
1
2
×
1-a
a
×1=1.
故答案為:1.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=x2+bx+c交x軸于A(1,0)、B(3,0)兩點,交y軸于點C,其頂點為D.
(1)求b、c的值并寫出拋物線的對稱軸;
(2)連接BC,過點O作直線OE⊥BC交拋物線的對稱軸于點E.求證:四邊形ODBE是等腰梯形;
(3)拋物線上是否存在點Q,使得△OBQ的面積等于四邊形ODBE的面積的
1
3
?若存在,求點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一條拋物線y=
1
4
x2+mx+n經過點(0,
3
2
)與(4,
3
2
).
(1)求這條拋物線的解析式,并寫出它的頂點坐標;
(2)現(xiàn)有一半徑為1,圓心P在拋物線上運動的動圓,當⊙P與坐標軸相切時,求圓心P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若所求的二次函數(shù)圖象與拋物線y=2x2-4x-1有相同的頂點,并且在對稱軸的左側,y隨x的增大而增大,在對稱軸的右側,y隨x的增大而減小,則所求二次函數(shù)的解析式為( 。
A.y=-x2+2x+4B.y=-ax2-2ax-3(a>0)
C.y=-2x2-4x-5D.y=ax2-2ax+a-3(a<0)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

對于任意兩個二次函數(shù):y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),當|a1|=|a2|時,我們稱這兩個二次函數(shù)的圖象為全等拋物線.
現(xiàn)有△ABM,A(-1,0),B(1,0).記過三點的二次函數(shù)拋物線為“C□□□”(“□□□”中填寫相應三個點的字母)
(1)若已知M(0,1),△ABM≌△ABN(0,-1).請通過計算判斷CABM與CABN是否為全等拋物線;
(2)在圖2中,以A、B、M三點為頂點,畫出平行四邊形.
①若已知M(0,n),求拋物線CABM的解析式,并直接寫出所有過平行四邊形中三個頂點且能與CABM全等的拋物線解析式.
②若已知M(m,n),當m,n滿足什么條件時,存在拋物線CABM根據(jù)以上的探究結果,判斷是否存在過平行四邊形中三個頂點且能與CABM全等的拋物線?若存在,請列出所有滿足條件的拋物線“C□□□”;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

有一座拋物線形拱橋,正常水位時橋下水面寬度為20m,拱頂距離水面4m.
(1)在如圖所示的直角坐標系中,求出該拋物線的解析式;
(2)設正常水位時橋下的水深為2m,為保證過往船只順利航行,橋下水面的寬度不得小于18m,求水深超過多少米時就會影響過往船只在橋下的順利航行.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,二次函數(shù)y=mx2+3(m-
1
4
)x+4(m<0)與x軸交于A、B兩點,(A在B的左邊),與y軸交于點C,且∠ACB=90度.
(1)求這個二次函數(shù)的解析式;
(2)矩形DEFG的一條邊DG在AB上,E、F分別在BC、AC上,設OD=x,矩形DEFG的面積為S,求S關于x的函數(shù)解析式;
(3)將(1)中所得拋物線向左平移2個單位后,與x軸交于A′、B′兩點(A′在B′的左邊),矩形D′E′F′G′的一條邊D′G′在A′B′上(G′在D′的左邊),E′、F′分別在拋物線上,矩形D′E′F′G′的周長是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

某飛機著陸滑行的路程s(米)與時間t(秒)的關系式為:s=60t-1.5t2,那么飛機著陸后滑行______米才能停止.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=
3
3
x2-
4
3
3
x+
3
與y軸交于點A,與x軸交于B、C兩點(C在B的左邊).
(1)過A、O、B三點作⊙M,求⊙M的半徑;
(2)點P為弧OAB上的動點,當點P運動到何位置時△OPB的面積最大?求出此時點P的坐標及△OPB的最大面積.

查看答案和解析>>

同步練習冊答案