【題目】如圖,已知拋物線y=﹣x﹣2圖象與x軸相交于A,B兩點(點A在點B的左側(cè)).若C(m,1﹣m)是拋物線上位于第四象限內(nèi)的點,D是線段AB上的一個動點(不與A,B重合),過點D分別作DE∥BC交AC于E,DF∥AC交BC于F.
(1)、求點A和點B的坐標(biāo);
(2)、求證:四邊形DECF是矩形;
(3)、連接EF,線段EF的長是否存在最小值?若存在,求出EF的最小值;若不存在,請說明理由.
【答案】(1)、(﹣1,0),(4,0);(2)、證明過程見解析;(3)、2.
【解析】
試題分析:(1)、根據(jù)拋物線的解析式來求點A、B的坐標(biāo)即可;(2)、欲證明四邊形DECF是矩形,只需證得四邊形DECF是平行四邊形且有一內(nèi)角為直角即可;(3)、連接CD,根據(jù)矩形DECF的對角線相等得到:EF=CD.當(dāng)CD⊥AB時,CD的值最小,即EF的值最小.
試題解析:(1)、當(dāng)y=0時,﹣x﹣2=0, 解方程,得 x1=﹣1,x2=4. ∵點A在點B的左側(cè),
∴點A、B的坐標(biāo)分別是(﹣1,0),(4,0);
(2)、把C(m,1﹣m)代入y=﹣x﹣2得:-2=1-m 解方程,得m=3或m=﹣2.
∵點C位于第四象限, ∴m>0,1﹣m<0,即m>1, ∴m=﹣2舍去, ∴m=3,
∴點C的坐標(biāo)為(3,﹣2). 過點C作CH⊥AB于H,則∠AHC=∠BHC=90°.
由A(﹣1,0),B(4,0),C(3,﹣2)得到:AH=4,CH=2,BH=1,AB=5, ∴=2.
又∵∠AHC=∠CHB=90°,∴△AHC∽△CHB, ∴∠ACH=∠CBH. ∵∠CBH+∠BCH=90°,
∴∠ACH+∠BCH=90°, ∴∠ACB=90°, ∵DE∥BC,DF∥AC, ∴四邊形DECF是平行四邊形,
∴平行四邊形DECF是矩形;
(3)、存在.理由如下: 連接CD. ∵平行四邊形DECF是矩形, ∴EF=CD.
當(dāng)CD⊥AB時,CD的值最。 ∵C(3,2), ∴DC的最小值是2, ∴EF的最小值是2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AC,BD相交于點O,E為AB的中點,DE⊥AB.
(1)求∠ABC的度數(shù);
(2)如果AC=,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了參加中考體育測試,甲、乙、丙三位同學(xué)進(jìn)行足球傳球訓(xùn)練,球從一個人腳下隨機(jī)傳到另一個人腳下,且每位傳球人傳給其余兩人的機(jī)會是均等的,由甲開始傳球,共傳球三次.
(1)請利用樹狀圖列舉出三次傳球的所有可能情況;
(2)求三次傳球后,球回到甲腳下的概率;
(3)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報道,2016年單位就業(yè)人員年平均工資超過70300元,將數(shù)70300用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=52°,∠ABC與∠ACB的角平分線交于D1,∠ABD1與∠ACD1的角平分線交于點D2,依此類推,∠ABD4與∠ACD4的角平分線交于點D5,則∠BD5C的度數(shù)是 ( )
A. 56° B. 60° C. 68° D. 94°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com