如圖1,拋物線y=-
1
4
x2+
1
4
x+3
與直線y=-
1
4
x-
3
4
交于A、B兩點.如圖2,質地均勻的正四面體骰子的各個面上依次標有數(shù)字-1、1、3、4.隨機拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點的橫坐標,第二次著地一面的數(shù)字n記做P點的縱坐標,則點P(m,n)落在如圖1中的拋物線與直線圍成區(qū)域內(圖中陰影部分,含邊界)的概率是______.
由拋物線與直線解析式可知,
當m=-1時,-
1
2
≤n≤
5
2
,
當m=1時,-1≤n≤3,
當m=3時,-
3
2
≤n≤
3
2
,
當m=4時,-
7
4
≤n≤0,
所有可能出現(xiàn)的結果如下:
第一次
第二次
-1134
-1(-1,-1)(-1,1)(-1,3)(-1,4)
1(1,-1)(1,1)(1,3)(1,4)
3(3,-1)(3,1)(3,3)(3,4)
4(4,-1)(4,1)(4,3)(4,4)
總共有16種結果,每種結果出現(xiàn)的可能性相同,而落在圖1中拋物線與直線圍成區(qū)域內的結果有7種:
(-1,1),(1,-1),(1,1),(1,3),(3,-1),(3,1),(4,-1).
因此P(落在拋物線與直線圍成區(qū)域內)=
7
16

故答案為:
7
16
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=
1
2
x2+bx與直線y=2x交于點O(0,0),A(a,12).點B是拋物線上O,A之間的一個動點,過點B分別作x軸、y軸的平行線與直線OA交于點C,E.
(1)求拋物線的函數(shù)解析式;
(2)若點C為OA的中點,求BC的長;
(3)以BC,BE為邊構造矩形BCDE,設點D的坐標為(m,n),求出m,n之間的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,以點C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點.
(1)求出A,B兩點的坐標;
(2)有一開口向下的拋物線y=a(x-h)2+k經過點A,B,且其頂點在⊙C上.試確定此拋物線的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如果拋物線y=-x2+2(m-1)x+m+1與x軸都交于A,B兩點,且A點在x軸的正半軸上,B點在x軸的負半軸上,OA的長是a,OB的長是b.
(1)求m的取值范圍;
(2)若a:b=3:1,求m的值,并寫出此時拋物線的解析式;
(3)設(2)中的拋物線與y軸交于點C,拋物線的頂點是M,問:拋物線上是否存在點P,使△PAB的面積等于△BCM面積的8倍?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

直線y=
1
2
x-2與x、y軸分別交于點A、C.拋物線的圖象經過A、C和點B(1,0).
(1)求拋物線的解析式;
(2)在直線AC上方的拋物線上有一動點D,當D與直線AC的距離DE最大時,求出點D的坐標,并求出最大距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:在四邊形ABCD中,AB=1,E、F、G、H分別時AB、BC、CD、DA上的點,且AE=BF=CG=DH.設四邊形EFGH的面積為S,AE=x(0≤x≤1).
(1)如圖①,當四邊形ABCD為正方形時,
①求S關于x的函數(shù)解析式,并求S的最小值S0;
②在圖②中畫出①中函數(shù)的草圖,并估計S=0.6時x的近似值(精確到0.01);
(2)如圖③,當四邊形ABCD為菱形,且∠A=30°時,四邊形EFGH的面積是否存在最小值?若存在,求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖平面直角坐標系中,函數(shù)圖象的表達式應是( 。
A.y=
3
2
x2
B.y=
2
3
x2
C.y=
4
3
x2
D.y=
3
4
x2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD是世紀廣場的示意圖,上底AD=90m,下底BC=150m,高100m,虛線MN是梯形ABCD的中位線.要設計修建寬度相同的一條橫向和兩條縱向大理石通道,橫向通道EGHF位于MN兩旁,且EF、GH與MN之間的距離相等,兩條縱向通道均與BC垂直,設通道寬度為xm.
(1)試用含x的代數(shù)式表示橫向通道EGHF的面積s1;
(2)若三條通道的面積和恰好是梯形ABCD面積的
1
4
時,求通道寬度為x;
(3)經測算大理石通道的修建費用y1(萬元)與通道寬度為xm的關系式為:y1=14x,廣場其余部分的綠化費用為0.05萬元/m2,若設計要求通道寬度x≤8m,則寬度x為多少時,世紀廣場修建總費用最少?最少費用為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,一名男生推鉛球,鉛球行進高度y(單位:m)與水平距離x(單位:m)之間的關系是y=-
1
12
x2+
2
3
x+
5
3
.則他將鉛球推出的距離是______m.

查看答案和解析>>

同步練習冊答案