如圖,梯形ABCD是世紀(jì)廣場(chǎng)的示意圖,上底AD=90m,下底BC=150m,高100m,虛線(xiàn)MN是梯形ABCD的中位線(xiàn).要設(shè)計(jì)修建寬度相同的一條橫向和兩條縱向大理石通道,橫向通道EGHF位于MN兩旁,且EF、GH與MN之間的距離相等,兩條縱向通道均與BC垂直,設(shè)通道寬度為xm.
(1)試用含x的代數(shù)式表示橫向通道EGHF的面積s1;
(2)若三條通道的面積和恰好是梯形ABCD面積的
1
4
時(shí),求通道寬度為x;
(3)經(jīng)測(cè)算大理石通道的修建費(fèi)用y1(萬(wàn)元)與通道寬度為xm的關(guān)系式為:y1=14x,廣場(chǎng)其余部分的綠化費(fèi)用為0.05萬(wàn)元/m2,若設(shè)計(jì)要求通道寬度x≤8m,則寬度x為多少時(shí),世紀(jì)廣場(chǎng)修建總費(fèi)用最少?最少費(fèi)用為多少?
(1)∵上底AD=90m,下底BC=150m,∴中位線(xiàn)的長(zhǎng)度為:(90+150)÷2=120,
∴s1=120x;

(2)根據(jù)題意得:120x+2×100x-2x2=
1
4
×
1
2
×(90+150)×100
,
解得:x1=10,x2=150(不合題意,舍去),
∴通道寬度為10m;

(3)依題意得
y=0.05(12000-320x+2x2)+14x=0.1(x-10)2+590,
∵x≤8,
∴當(dāng)x=8時(shí),y有最小值590.4(萬(wàn)元)
∴寬度為8m時(shí),世紀(jì)廣場(chǎng)修建總費(fèi)用最少,最少費(fèi)用為590.4萬(wàn)元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)y=-
1
8
x2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,且拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=1,設(shè)∠ABC=α,且cosα=
4
5

(1)求這條拋物線(xiàn)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→B→C方向,向點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿射線(xiàn)BC方向運(yùn)動(dòng).若P、Q兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)速度均為1個(gè)單位長(zhǎng)度/秒,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),整個(gè)運(yùn)動(dòng)隨之結(jié)束,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①試求△APQ的面積S與t之間的函數(shù)關(guān)系式,并指出自變量t的取值范圍;
②在運(yùn)動(dòng)過(guò)程中,是否存在這樣的t的值,使得△APQ是以AP為一腰的等腰三角形?若存在,請(qǐng)求出所有符合條件的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖1,拋物線(xiàn)y=-
1
4
x2+
1
4
x+3
與直線(xiàn)y=-
1
4
x-
3
4
交于A、B兩點(diǎn).如圖2,質(zhì)地均勻的正四面體骰子的各個(gè)面上依次標(biāo)有數(shù)字-1、1、3、4.隨機(jī)拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點(diǎn)的橫坐標(biāo),第二次著地一面的數(shù)字n記做P點(diǎn)的縱坐標(biāo),則點(diǎn)P(m,n)落在如圖1中的拋物線(xiàn)與直線(xiàn)圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線(xiàn)(拋物線(xiàn)所在平面與墻面垂直),(如圖)如果拋物線(xiàn)的最高點(diǎn)M離墻1米,離地面
40
3
米,則水流下落點(diǎn)B離墻距離OB是(  )
A.2米B.3米C.4米D.5米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)y=
1
2
x2+bx+c與y軸交于點(diǎn)C,與x軸相交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,-4).
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)Q是線(xiàn)段OB上的動(dòng)點(diǎn),過(guò)點(diǎn)Q作QEBC,交AC于點(diǎn)E,連接CQ,設(shè)OQ=m,當(dāng)△CQE的面積最大時(shí),求m的值,并寫(xiě)出點(diǎn)Q的坐標(biāo);
(3)若平行于x軸的動(dòng)直線(xiàn),與該拋物線(xiàn)交于點(diǎn)P,與直線(xiàn)BC交于點(diǎn)F,D的坐標(biāo)為(-2,0),則是否存在這樣的直線(xiàn)l,使OD=DF?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商店購(gòu)進(jìn)一批單價(jià)為8元的商品,如果按每件10元出,那么每天可銷(xiāo)售100件,經(jīng)調(diào)查發(fā)現(xiàn),這種商品的銷(xiāo)售單價(jià)每提高1元,其銷(xiāo)售量相應(yīng)減少10件.將銷(xiāo)售價(jià)定為多少,才能使每天所獲銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,tan∠ACO=
1
3

(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)經(jīng)過(guò)C、D兩點(diǎn)的直線(xiàn),與x軸交于點(diǎn)E,在拋物線(xiàn)上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,二次函數(shù)y=
1
2
x2+bx-
3
2
的圖象與x軸交于點(diǎn)A(-3,0)和點(diǎn)B,以AB為邊在x軸上方作正方形ABCD,點(diǎn)P是x軸上一動(dòng)點(diǎn),連接DP,過(guò)點(diǎn)P作DP的垂線(xiàn)與y軸交于點(diǎn)E.
(1)請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo):______;
(2)當(dāng)點(diǎn)P在線(xiàn)段AO(點(diǎn)P不與A、O重合)上運(yùn)動(dòng)至何處時(shí),線(xiàn)段OE的長(zhǎng)有最大值,求出這個(gè)最大值;
(3)是否存在這樣的點(diǎn)P,使△PED是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及此時(shí)△PED與正方形ABCD重疊部分的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商場(chǎng)將每件進(jìn)價(jià)為80元的某種商品原來(lái)按每件100元出售,一天可售出100件,經(jīng)調(diào)查這種商品每降低1元,其銷(xiāo)量可增加10件.
①求商場(chǎng)原來(lái)一天可獲利潤(rùn)多少元?
②設(shè)后來(lái)該商品每件降價(jià)x元,一天可獲利潤(rùn)y元.
1)若經(jīng)營(yíng)該商品一天要獲利2160元,則每件商品應(yīng)降價(jià)多少元?
2)當(dāng)售價(jià)為多少時(shí),獲利最大并求最大值?

查看答案和解析>>

同步練習(xí)冊(cè)答案