【題目】將正方形ABCD繞點A按逆時針方向旋轉30°,得正方形AB1C1D1 , B1C1交CD于點E,AB= ,則四邊形AB1ED的內切圓半徑為(

A.
B.
C.
D.

【答案】B
【解析】解:作∠DAF與∠AB1G的角平分線交于點O,過O作OF⊥AB1 ,
則∠OAF=30°,∠AB1O=45°,
故B1F=OF= OA,
設B1F=x,則AF= ﹣x,
故( ﹣x)2+x2=(2x)2 ,
解得x= 或x= (舍去),
∴四邊形AB1ED的內切圓半徑為:
故選:B.

【考點精析】解答此題的關鍵在于理解正方形的性質的相關知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形,以及對三角形的內切圓與內心的理解,了解三角形的內切圓的圓心是三角形的三條內角平分線的交點,它叫做三角形的內心.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,有一點P在線段AC上移動.若AB=AC=5,BC=6,則BP的最小值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于點A和點B,與y軸交于點C,點B坐標為(6,0),點C坐標為(0,6),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接BD.

(Ⅰ)求拋物線的解析式及點D的坐標;
(Ⅱ)點F是拋物線上的動點,當∠FBA=∠BDE時,求點F的坐標;
(Ⅲ)若點M是拋物線上的動點,過點M作MN∥x軸與拋物線交于點N,點P在x軸上,點Q在坐標平面內,以線段MN為對角線作正方形MPNQ,請寫出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于任意四個有理數(shù)a,b,c,d,可以組成兩個有理數(shù)對(a,b)與(c,d).我們規(guī)定:

(a,b)★(c,d)=bc﹣ad.

例如:(1,2)★(3,4)=2×3﹣1×4=2.

根據(jù)上述規(guī)定解決下列問題:

(1)有理數(shù)對(2,﹣3)★(3,﹣2)=   

(2)若有理數(shù)對(﹣3,2x﹣1)★(1,x+1)=7,則x=   

(3)當滿足等式(﹣3,2x﹣1)★(k,x+k)=5+2kx是整數(shù)時,求整數(shù)k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點,與x軸交于點B.

(1)若直線y=mx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;
(2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標;
(3)設點P為拋物線的對稱軸x=﹣1上的一個動點,求使△BPC為直角三角形的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)下列條件畫圖

如圖示點A、B、C分別代表三個村莊.

(1)畫射線AC;

(2)畫線段AB;

(3)若線段AB是連結A村和B村的一條公路,現(xiàn)C村莊也要修一條公路與A、B兩村莊之間的公路連通,為了減少修路開支,C村莊應該如何修路?請在同一圖上用三角板畫出示意圖,并說明畫圖理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,E、F分別是AB、CD的中點.

(1)求證:四邊形EBFD為平行四邊形;

(2)對角線AC分別與DE、BF交于點M、N.求證:△ABN≌△CDM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系xOy中,已知點A(0,3),B(2,3),OCa.將梯形ABCO沿直線yx折疊,點A落在線段OC上,對應點為E.

(1)求點E的坐標;

(2)①若BCAE,求a的值;(提示:兩邊互相平行的四邊形是平行四邊形,平行四邊形的對邊相等)

②如圖②,若梯形ABCO的面積為2a,且直線ymx將此梯形面積分為12的兩部分,求直線ymx的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某小區(qū)的一個健向器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端點A到地面CD的距離(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)

查看答案和解析>>

同步練習冊答案