【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于點A和點B,與y軸交于點C,點B坐標(biāo)為(6,0),點C坐標(biāo)為(0,6),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接BD.
(Ⅰ)求拋物線的解析式及點D的坐標(biāo);
(Ⅱ)點F是拋物線上的動點,當(dāng)∠FBA=∠BDE時,求點F的坐標(biāo);
(Ⅲ)若點M是拋物線上的動點,過點M作MN∥x軸與拋物線交于點N,點P在x軸上,點Q在坐標(biāo)平面內(nèi),以線段MN為對角線作正方形MPNQ,請寫出點Q的坐標(biāo).
【答案】解:(Ⅰ)把B、C兩點坐標(biāo)代入拋物線解析式可得 ,解得 ,
∴拋物線解析式為y=﹣ x2+2x+6,
∵y=﹣ x2+2x+6=﹣ (x﹣2)2+8,
∴D(2,8);
(Ⅱ)如圖1,過F作FG⊥x軸于點G,
設(shè)F(x,﹣ x2+2x+6),則FG=|﹣ x2+2x+6|,
∵∠FBA=∠BDE,∠FGB=∠BED=90°,
∴△FBG∽△BDE,
∴ = ,
∵B(6,0),D(2,8),
∴E(2,0),BE=4,DE=8,OB=6,
∴BG=6﹣x,
∴ = ,
當(dāng)點F在x軸上方時,有 = ,解得x=﹣1或x=6(舍去),此時F點的坐標(biāo)為(﹣1, );
當(dāng)點F在x軸下方時,有 =﹣ ,解得x=﹣3或x=6(舍去),此時F點的坐標(biāo)為(﹣3,﹣ );
綜上可知F點的坐標(biāo)為(﹣1, )或(﹣3,﹣ );
(Ⅲ)如圖2,設(shè)對稱軸MN、PQ交于點O′,
∵點M、N關(guān)于拋物線對稱軸對稱,且四邊形MPNQ為正方形,
∴點P為拋物線對稱軸與x軸的交點,點Q在拋物線的對稱軸上,
設(shè)Q(2,2n),則M坐標(biāo)為(2﹣n,n),
∵點M在拋物線y=﹣ x2+2x+6的圖象上,
∴n=﹣ (2﹣n)2+2(2﹣n)+6,解得n=﹣1+ 或n=﹣1﹣ ,
∴滿足條件的點Q有兩個,其坐標(biāo)分別為(2,﹣2+2 )或(2,﹣2﹣2 ).
【解析】(Ⅰ)由B、C的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式,再求其頂點D即可;
(Ⅱ)過F作FG⊥x軸于點G,可設(shè)出F點坐標(biāo),利用△FBG∽△BDE,由相似三角形的性質(zhì)可得到關(guān)于F點坐標(biāo)的方程,可求得F點的坐標(biāo);
(Ⅲ)由于M、N兩點關(guān)于對稱軸對稱,可知點P為對稱軸與x軸的交點,點Q在對稱軸上,可設(shè)出Q點的坐標(biāo),則可表示出M的坐標(biāo),代入拋物線解析式可求得Q點的坐標(biāo).
【考點精析】掌握二次函數(shù)的圖象和二次函數(shù)的性質(zhì)是解答本題的根本,需要知道二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師在黑板上出了一道解方程的題,小虎馬上舉手,要求到黑板上去做,他是這樣做的:
5(3x-1)=2(4x+2)-1①,
15x-5=8x+4-1②,
15x-8x=4-1+5③
7x④,
x=⑤
老師說:小虎解一元一次方程的一般步驟都知道,但沒有掌握好,因此解題出現(xiàn)了錯誤,請指出他的錯步及錯誤原因: ,方程的正確的解是x= .
然后,你自己細(xì)心的解下面的方程:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有兩根直桿隔河相對,桿CD高30m,桿AB高20m,兩桿相距50m.現(xiàn)兩桿上各有一只魚鷹,它們同時看到兩桿之間的河面上E處浮起一條小魚,于是以同樣的速度同時飛下來奪魚,結(jié)果兩只魚鷹同時到達(dá),叼住小魚.問兩桿底部距魚的距離各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
(1)某文藝團(tuán)體組織了一場義演為“希望工程”募捐,共售出1000張門票,已知成人票每張8元,學(xué)生票每張5元,共得票款6950元,成人票和學(xué)生票各幾張
(2)某地生產(chǎn)一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1000元;經(jīng)粗加工后銷售,每噸利潤可達(dá)4500元;經(jīng)精加工后銷售,每噸利潤漲至7500元.當(dāng)?shù)匾患肄r(nóng)工商公司收獲這種蔬菜140噸,該公司加工的生產(chǎn)能力是:如果對蔬菜進(jìn)行粗加工,每天可加工16噸;如果進(jìn)行精加工,每天可加工6噸,但兩種加工方式不能同時進(jìn)行.受季節(jié)等條件限制,公司必須在15天內(nèi)將這批蔬菜全部銷售或加工完畢,為此公司研制了三種可行方案.
方案一:將蔬菜全部進(jìn)行精加工.沒來得及進(jìn)行精加工的直接出售
方案二:盡可能多地對蔬菜進(jìn)行粗加工,沒有來得及進(jìn)行加工的蔬菜,在市場上直接銷售.
方案三:將部分蔬菜進(jìn)行精加工,其余蔬菜進(jìn)行粗加工,并恰好15天完成.
你認(rèn)為選擇哪種方案獲利最多?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】取一個自然數(shù),若它是奇數(shù),則乘以3加上1,若它是偶數(shù),則除以2,按此規(guī)則經(jīng)過若干步的計算最終可得到1.這個結(jié)論在數(shù)學(xué)上還沒有得到證明.但舉例驗證都是正確的.例如:取自然數(shù)5.最少經(jīng)過下面5步運算可得1,即:5 16 8 4 2 1,如果自然數(shù)m最少經(jīng)過7步運算可得到1,則所有符合條件的m的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】世界讀書日,新華書店矩形購書優(yōu)惠活動:①一次性購書不超過100元,不享受打折優(yōu)惠;②一次性購書超過100元但不超過200元一律八折;③一次性購書200元以上一律打六折.小麗在這次活動中,兩次購書總共付款190.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正方形ABCD繞點A按逆時針方向旋轉(zhuǎn)30°,得正方形AB1C1D1 , B1C1交CD于點E,AB= ,則四邊形AB1ED的內(nèi)切圓半徑為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知點A(0,8),B(6,0),點C(3,a)在線段AB上.
(1)則a的值為________;
(2)若點D(-4,3),求直線CD的函數(shù)表達(dá)式;
(3)點(-5,-4)在直線CD上嗎?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com