如圖,正方形ABCD中,E是BC邊上一點(diǎn),以E為圓心、EC為半徑的半圓與以A為圓心,AB為半徑的圓弧外切,則S四邊形ADCE:S正方形ABCD的值為( )
A.
B.
C.
D.
【答案】分析:兩圓相外切,則圓心距等于兩圓半徑的和.利用勾股定理和和等面積法求解.
解答:解:設(shè)正方形的邊長(zhǎng)為y,EC=x,
由題意知,AE2=AB2+BE2
即(y+x)2=y2+(y-x)2,
化簡(jiǎn)得,y=4x,
故可得出S△ABE=AB•BE=6x2
S正方形ABCD=y2=16x2
S四邊形ADCE=10x2
故S四邊形ADCE:S正方形ABCD=5:8;
故選D.
點(diǎn)評(píng):此題考查兩相切圓的性質(zhì),關(guān)鍵是先構(gòu)建一個(gè)直角三角形然后利用等面積法求解即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案