【題目】某校為了解學(xué)生每天參加戶外活動(dòng)的情況,隨機(jī)抽查了100名學(xué)生每天參加戶外活動(dòng)的時(shí)間情況,并將抽查結(jié)果繪制成如圖所示的扇形統(tǒng)計(jì)圖.
請你根據(jù)圖中提供的信息解答下列問題:

(1)請直接寫出圖a的值,并求出本次抽查中學(xué)生每天參加戶外活動(dòng)時(shí)間的中位數(shù);
(2)求本次抽查中學(xué)生每天參加戶外活動(dòng)的平均時(shí)間.

【答案】
(1)

解:a=1﹣15%﹣25%﹣40%=20%.

100×20%=20(人),

100×40%=40(人),

100×25%=25(人),

100×15%=15(人).

則本次抽查中學(xué)生每天參加活動(dòng)時(shí)間的中位數(shù)是1


(2)

解: =1.175(小時(shí)).

答:本次抽查中學(xué)生每天參加戶外活動(dòng)的平均時(shí)間是1.175小時(shí)


【解析】(1)用1減去其它組的百分比即可求得a的值,然后求得各組的人數(shù),根據(jù)中位數(shù)定義求得中位數(shù);(2)利用加權(quán)平均數(shù)公式即可求解.
【考點(diǎn)精析】關(guān)于本題考查的算術(shù)平均數(shù)和中位數(shù)、眾數(shù),需要了解總數(shù)量÷總份數(shù)=平均數(shù).解題關(guān)鍵是根據(jù)已知條件確定總數(shù)量以及與它相對應(yīng)的總份數(shù);中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個(gè),也可能多個(gè),它一定是這組數(shù)據(jù)中的數(shù)才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,﹣3),動(dòng)點(diǎn)P在拋物線上.

(1)b= , c= , 點(diǎn)B的坐標(biāo)為;(直接填寫結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)過動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,A、B兩城市相距100km,現(xiàn)計(jì)劃在這兩座城市間修建一條高速公路(即線段AB),經(jīng)測量,森林保護(hù)中心P在A城市的北偏東30°和B城市的北偏西45°的方向上,已知森林保護(hù)區(qū)的范圍在以P點(diǎn)為圓心,50km為半徑的圓形區(qū)域內(nèi),請問計(jì)劃修建的這條高速公路會不會穿越保護(hù)區(qū),為什么?(參考數(shù)據(jù): ≈1.732, ≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)在平均每天比原計(jì)劃多生產(chǎn)25個(gè)零件,現(xiàn)在生產(chǎn)600個(gè)零件所需時(shí)間與原計(jì)劃生產(chǎn)450個(gè)零件所需時(shí)間相同,原計(jì)劃平均每天生產(chǎn)多少個(gè)零件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD被直線EF所截,∠1=55°,下列條件中能判定AB∥CD的是(
A.∠2=35°
B.∠2=45°
C.∠2=55°
D.∠2=125°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E為AB邊上一點(diǎn),EC平分∠DEB,F(xiàn)為CE的中點(diǎn),連接AF,BF,過點(diǎn)E作EH∥BC分別交AF,CD于G,H兩點(diǎn).
(1)求證:DE=DC;
(2)求證:AF⊥BF;
(3)當(dāng)AFGF=28時(shí),請直接寫出CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+mx+3與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)B的坐標(biāo)為(3,0),拋物線與直線y=﹣ x+3交于C、D兩點(diǎn).連接BD、AD.
(1)求m的值.
(2)拋物線上有一點(diǎn)P,滿足S△ABP=4S△ABD , 求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的直徑CD=6,A,B為圓周上兩點(diǎn),且四邊形OABC是平行四邊形,過A點(diǎn)作直線EF∥BD,分別交CD,CB的延長線于點(diǎn)E,F(xiàn),AO與BD交于G點(diǎn).
(1)求證:EF是⊙O的切線;
(2)求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線EF∥BC分別交∠ACB、外角∠ACD的平分線于點(diǎn)E、F.

(1)若CE=8,CF=6,求OC的長;
(2)連接AE、AF.問:當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案