【題目】如圖,已知⊙O的直徑CD=6,A,B為圓周上兩點(diǎn),且四邊形OABC是平行四邊形,過A點(diǎn)作直線EF∥BD,分別交CD,CB的延長(zhǎng)線于點(diǎn)E,F(xiàn),AO與BD交于G點(diǎn).
(1)求證:EF是⊙O的切線;
(2)求AE的長(zhǎng).

【答案】
(1)證明:∵CD為直徑,

∴∠DBC=90°,

∴BD⊥BC,

∵四邊形OABC是平行四邊形,

∴AO∥BC,

∴BD⊥OA,

∵EF∥BD,

∴OA⊥EF,

∴EF是⊙O的切線;


(2)解:連接OB,如圖,

∵四邊形OABC是平行四邊形,

∴OA=BC,

而OB=OC=OA,

∴OB=OC=BC,

∴△OBC為等邊三角形,

∴∠C=60°,

∴∠AOE=∠C=60°,

在Rt△OAE中,∵tan∠AOE= ,

∴AE=3tan60°=3


【解析】(1)利用圓周角定理得到∠DBC=90°,再利用平行四邊形的性質(zhì)得AO∥BC,所以BD⊥OA,加上EF∥BD,所以O(shè)A⊥EF,于是根據(jù)切線的判定定理可得到EF是⊙O的切線;(2)連接OB,如圖,利用平行四邊形的性質(zhì)得OA=BC,則OB=OC=BC,于是可判斷△OBC為等邊三角形,所以∠C=60°,易得∠AOE=∠C=60°,然后在Rt△OAE中利用正切的定義可求出AE的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式: 第一個(gè)等式:
第二個(gè)等式:
第三個(gè)等式:
第四個(gè)等式:
按上述規(guī)律,回答下列問題:
(1)請(qǐng)寫出第六個(gè)等式:a6==;
(2)用含n的代數(shù)式表示第n個(gè)等式:an==
(3)a1+a2+a3+a4+a5+a6=(得出最簡(jiǎn)結(jié)果);
(4)計(jì)算:a1+a2+…+an

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生每天參加戶外活動(dòng)的情況,隨機(jī)抽查了100名學(xué)生每天參加戶外活動(dòng)的時(shí)間情況,并將抽查結(jié)果繪制成如圖所示的扇形統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)圖中提供的信息解答下列問題:

(1)請(qǐng)直接寫出圖a的值,并求出本次抽查中學(xué)生每天參加戶外活動(dòng)時(shí)間的中位數(shù);
(2)求本次抽查中學(xué)生每天參加戶外活動(dòng)的平均時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形AOCB的頂點(diǎn)A、C分別位于x軸和y軸的正半軸上,線段OA、OC的長(zhǎng)度滿足方程|x﹣15|+ =0(OA>OC),直線y=kx+b分別與x軸、y軸交于M、N兩點(diǎn),將△BCN沿直線BN折疊,點(diǎn)C恰好落在直線MN上的點(diǎn)D處,且tan∠CBD=

(1)求點(diǎn)B的坐標(biāo);
(2)求直線BN的解析式;
(3)將直線BN以每秒1個(gè)單位長(zhǎng)度的速度沿y軸向下平移,求直線BN掃過矩形AOCB的面積S關(guān)于運(yùn)動(dòng)的時(shí)間t(0<t≤13)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如表

x

﹣1

0

1

3

y

﹣1

3

5

3

下列結(jié)論:①ac<0;②當(dāng)x>1時(shí),y的值隨x值的增大而減小.
③當(dāng)x=2時(shí),y=5;④3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
其中正確的有 . (填正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,我們把一個(gè)半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”,已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),AB為半圓的直徑,拋物線的解析式為y=x2﹣2x﹣3,求這個(gè)“果圓”被y軸截得線段CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以坐標(biāo)原點(diǎn)O為圓心,作半徑為2的圓,若直線y=﹣x+b與⊙O相交,則b的取值范圍是( )
A.0≤b<2
B.﹣2
C.﹣2 2
D.﹣2 <b<2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.

(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)解不等式組:
(2)化簡(jiǎn):( ﹣a)÷

查看答案和解析>>

同步練習(xí)冊(cè)答案