【題目】如圖,若直線AB與直線CD交于點(diǎn)O,OA平分∠COF,OE⊥CD.

(1)寫出圖中與∠EOB互余的角;
(2)若∠AOF=30°,求∠BOE和∠DOF的度數(shù).

【答案】
(1)解:∵OA平分∠COF, ∴∠COA=∠FOA=∠BOD,
∵OE⊥CD,
∴∠EOB+∠BOD=90°,
∴∠COA+∠EOB=90°,∠FOA+∠EOB=90°,
∴與∠EOB互余的角是:∠COA,∠FOA,∠BOD
(2)解:∵∠AOF=30°,由(1)知∠COA=∠FOA=∠BOD=30°,
∴∠DOF=180°﹣∠FOA﹣∠BOD=120°,
∵OE⊥CD,
∴∠BOE=90°﹣30°=60°
【解析】(1)根據(jù)角平分線的定義及對(duì)頂角相等得出∠COA=∠FOA=∠BOD,根據(jù)垂直的定義得出∠EOB+∠BOD=90°,從而根據(jù)等量代換得出∠COA+∠EOB=90°,∠FOA+∠EOB=90°,進(jìn)而得出答案與∠EOB互余的角是:∠COA,∠FOA,∠BOD ;
(2)根據(jù)角平分線的定義及對(duì)頂角相等得出∠COA=∠FOA=∠BOD=30°, 然后根據(jù)角的和差得出∠DOF=180°﹣∠FOA﹣∠BOD=120°,根據(jù)互為余角的定義得出∠BOE=90°﹣30°=60° 。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】武漢軍運(yùn)會(huì)結(jié)束后,部分運(yùn)動(dòng)員賽后相互贈(zèng)送了共132件紀(jì)念品,若設(shè)這部分運(yùn)動(dòng)員有x人,可列方程為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( )

A. -x3+3x2=x2 B. 3a2b-3ba2=0 C. -3(a+b)=-3a+3b D. 3y2-2y2=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點(diǎn)P,BQ⊥AD于點(diǎn)Q,PQ=4,PE=1.
(1)求∠BPQ的度數(shù);
(2)求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從邊長(zhǎng)為a的大正方形紙板中挖去一個(gè)邊長(zhǎng)為b的小正方形紙板后,將其裁成四個(gè)相同的等腰梯形(如圖甲),然后拼成一個(gè)平行四邊形(如圖乙).那么通過計(jì)算兩個(gè)圖形陰影部分的面積,可以驗(yàn)證成立的公式為(
A.a2﹣b2=(a﹣b)2
B.(a+b)2=a2+2ab+b2
C.(a﹣b)2=a2﹣2ab+b2
D.a2﹣b2=(a+b)(a﹣b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)在圖中作出△ABC關(guān)于y軸的對(duì)稱圖形△A1B1C1
(2)在y軸上找出一點(diǎn)P,使得PA+PB的值最小,直接寫出點(diǎn)P的坐標(biāo);
(3)在平面直角坐標(biāo)系中,找出一點(diǎn)A2 , 使△A2BC與△ABC關(guān)于直線BC對(duì)稱,直接寫出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某風(fēng)景區(qū)對(duì)5個(gè)旅游景點(diǎn)的游客人數(shù)進(jìn)行了統(tǒng)計(jì),有關(guān)數(shù)據(jù)如下表:

景點(diǎn)

A

B

C

D

E

票價(jià)(元)

10

10

15

20

25

平均日人數(shù)(千人)

1

1

2

3

2


(1)如果這個(gè)星期天你去此風(fēng)景區(qū)游玩,小剛、小明也去了,你在哪個(gè)景點(diǎn)遇見他們兩個(gè)的機(jī)會(huì)較大?為什么?
(2)如果到了這個(gè)風(fēng)景區(qū),你不想把這幾個(gè)景點(diǎn)全部參觀完,但又不知選哪一個(gè),于是你想出一個(gè)主意:抓鬮,那么,你抓出哪種票價(jià)的機(jī)會(huì)較大有多大?此時(shí)你參觀哪個(gè)景點(diǎn)的機(jī)會(huì)較大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)(﹣16 )﹣(﹣10 )﹣(+1
(2)(﹣ )×(﹣1 )÷(﹣2
(3)(﹣2)2×6﹣(﹣2)3÷4
(4)(4a2b﹣5ab2)﹣(3a2b﹣4ab2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線與x軸交于A,B,與y軸交于C,拋物線的頂點(diǎn)為D,直線l過C交x軸于E(4,0).

(1)寫出D的坐標(biāo)和直線l的解析式;

(2)P(x,y)是線段BD上的動(dòng)點(diǎn)(不與B,D重合),PF⊥x軸于F,設(shè)四邊形OFPC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;

(3)點(diǎn)Q在x軸的正半軸上運(yùn)動(dòng),過Q作y軸的平行線,交直線l于M,交拋物線于N,連接CN,將△CMN沿CN翻轉(zhuǎn),M的對(duì)應(yīng)點(diǎn)為M′.在圖2中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案