【題目】已知:⊙O上兩個定點A,B和兩個動點C,D,AC與BD交于點E.
(1)如圖1,求證:EAEC=EBED
(2)如圖2,若 , AD是⊙O的直徑,求證:ADAC=2BDBC
(3)如圖3,若AC⊥BD,點O到AD的距離為2,求BC的長
【答案】
(1)
證明:∵∠EAD=∠EBC,∠BCE=∠ADE,
∴△AED∽△BEC,
∴=,
∴EAEC=EBED
(2)
證明:如圖2,
連接CD,OB交AC于點F
∵B是弧AC的中點,
∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.
又∵AD為⊙O直徑,
∴∠ABC=90°,又∠CFB=90°.
∴△CBF∽△ABD.
∴,故CFAD=BDBC.
∴ACAD=2BDBC
(3)
解:如圖3,連接AO并延長交⊙O于F,連接DF,
∴AF為⊙O的直徑,
∴∠ADF=90°,
過O作OH⊥AD于H,
∴AH=DH,OH∥DF,
∵AO=OF,
∴DF=2OH=4,
∵AC⊥BD,
∴∠AEB=∠ADF=90°,
∵∠ABD=∠F,
∴△ABE∽△ADF,
∴∠1=∠2,
∴
∴BC=DF=4.
【解析】(1)根據同弧所對的圓周角相等得到角相等,從而證得三角形相似,于是得到結論;
(2)如圖2,連接CD,OB交AC于點F由B是弧AC的中點得到∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.證得△CBF∽△ABD.即可得到結論;
(3)如圖3,連接AO并延長交⊙O于F,連接DF得到AF為⊙O的直徑于是得到∠ADF=90°,過O作OH⊥AD于H,根據三角形的中位線定理得到DF=2OH=4,通過△ABE∽△ADF,得到1=∠2,于是結論可得.
科目:初中數學 來源: 題型:
【題目】如圖,小賢為了體驗四邊形的不穩(wěn)定性,將四根木條用釘子釘成一個矩形框架ABCD,B與D兩點之間用一根橡皮筋拉直固定,然后向右扭動框架,觀察所得四邊形的變化,下列判斷錯誤的是( )
A.四邊形ABCD由矩形變?yōu)槠叫兴倪呅?/span>
B.BD的長度增大
C.四邊形ABCD的面積不變
D.四邊形ABCD的周長不變
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形 OABC中,OA=3,OC=5,分別以 OA、OC所在直線為x 軸、y 軸,建立平面直角坐標系,D是邊CB上的一個動點(不與C、B重合),反比例函數y=(k>0)的圖象經過點D且與邊BA交于點E,連接DE.
(1)連接OE,若△EOA的面積為2,則k=
(2)連接CA,DE與CA是否平行?請說明理由:
(3)是否存在點D,使得點B關于DE的對稱點在OC上?若存在,求出點D的坐標;若不存在,請說明理由:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了了解初三年級1000名學生的身體健康情況,從該年級隨機抽取了若干名學生,將他們按體重(均為整數,單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據統(tǒng)計數據繪制了如下兩幅尚不完整的統(tǒng)計圖.
解答下列問題:
(1)這次抽樣調查的樣本容量是 , 并補全頻數分布直方圖
(2)C組學生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是 度
(3)請你估計該校初三年級體重超過60kg的學生大約有多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,C為∠AOB的邊OA上一點,OC=6,N為邊OB上異于點O的一動點,P是線段CN上一點,過點P分別作PQ∥OA交OB于點Q,PM∥OB交OA于點M.
(1)若∠AOB=60°,OM=4,OQ=1,求證:CN⊥OB
(2)當點N在邊OB上運動時,四邊形OMPQ始終保持為菱形.
①問:﹣的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說明理由.
②設菱形OMPQ的面積為S1 , △NOC的面積為S2 , 求的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為6,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉90°,得到△DCM.若AE=2,則FM的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在建立平面直角坐標系的方格紙中,每個小方格都是邊長為1的小正方形,△ABC的頂點均在格點上,點P的坐標為(﹣1,0),請按要求畫圖與作答:
(1)把△ABC繞點P旋轉180°得△A′B′C.
(2)把△ABC向右平移7個單位得△A″B″C″.
(3)△A′B′C與△A″B″C″是否成中心對稱,若是,找出對稱中心P′,并寫出其坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com