【題目】在數(shù)軸上,點MN分別表示數(shù)m,n 則點MN 之間的距離為|m-n|.已知點A,B,C,D在數(shù)軸上分別表示的數(shù)為a,bc,d.且|a-c|=|b-c|=|d-a|=1 (a≠b),則線段BD的長度為(

A.3.5B.0.5C.3.50.5D.4.50.5

【答案】D

【解析】

運用兩點之間的距離公式,畫出數(shù)軸解答即可.

解:∵|ac|=|bc|=1

C在點A和點B之間,點A與點C之間的距離為1,點B與點C之間的距離為1,

|da|=1,

∴|da|=2.5

D與點A之間的距離為2.5,

如圖:

線段BD的長度為DA+AC+CB=2.5+1+1=4.5

如圖:線段BD的長度為DA -AB=2.5-1-1=0.5

故答案為D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).

(1)求點B,C的坐標;
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】y= x+1是關(guān)于x的一次函數(shù),則一元二次方程kx2+2x+1=0的根的情況為( )
A.沒有實數(shù)根
B.有一個實數(shù)根
C.有兩個不相等的實數(shù)根
D.有兩個相等的實數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,過點A(﹣ ,0)的兩條直線分別交y軸于B,C兩點,且B,C兩點的縱坐標分別是一元二次方程x2﹣2x﹣3=0的兩個根.

(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點D在直線AC上,且DB=DC,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A,B分別在反比例函數(shù)y= (x>0),y= (x>0)的圖象上且OA⊥OB,則tanB為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩個角之差的絕對值等于60°,則稱這兩個角互為互優(yōu)角(本題中所有角都是指大于且小于180°的角)

(1)若∠1和∠2互為互優(yōu)角,當∠1=90°時,則∠2=_____°

(2)如圖1,將一長方形紙片沿著EP對折(P在線段BC上,點E在線段AB)使點B落在點若與互為互優(yōu)角,求∠BPE的度數(shù);

(3)再將紙片沿著PF對折(F在線段CDAD)使點C落在C′

①如圖2,若點EC′、P在同一直線上,且互為互優(yōu)角,求∠EPF的度數(shù)(對折時,線段落在∠EPF內(nèi)部);

②若∠B′PC′與∠EPF互為互優(yōu)角,則∠BPE求∠CPF應(yīng)滿足什么樣的數(shù)量關(guān)系(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車逐漸成為高校學(xué)生喜愛的“綠色出行”方式之一,自2016年國慶后,許多高校均投放了使用手機支付就可隨取隨用的共享單車.某高校為了解本校學(xué)生出行使用共享單車的情況,隨機調(diào)查了某天部分出行學(xué)生使用共享單車的情況,并整理成如下統(tǒng)計表.

使用次數(shù)

0

1

2

3

4

5

人數(shù)

11

15

23

28

18

5

(1)這天部分出行學(xué)生使用共享單車次數(shù)的中位數(shù)是   ,眾數(shù)是   ,該中位數(shù)的意義是   ;

(2)這天部分出行學(xué)生平均每人使用共享單車約多少次?(結(jié)果保留整數(shù))

(3)若該校某天有1500名學(xué)生出行,請你估計這天使用共享單車次數(shù)在3次以上(含3次)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線ABCD,EAB、CD間的一點,連接EA、EC.


(1)如圖①,若∠A=20°,C=40°,則∠AEC=   °.

(2)如圖②,若∠A=x°,C=y°,則∠AEC=   °.

(3)如圖③,若∠A=α,C=β,則α,β與∠AEC之間有何等量關(guān)系.并簡要說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.

(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案