3.對于一次函數(shù)y=kx+b,當(dāng)1≤x≤4時,3≤y≤6,則一次函數(shù)的解析式為y=x+2或y=-x+7.

分析 由一次函數(shù)的單調(diào)性即可得知點(1,3)、(4,6)在一次函數(shù)y=kx+b的圖象上或點(1,6)、(4,3)在一次函數(shù)y=kx+b的圖象上,根據(jù)點的坐標(biāo)利用待定系數(shù)法即可求出一次函數(shù)的解析式,此題得解.

解答 解:∵對于一次函數(shù)y=kx+b,當(dāng)1≤x≤4時,3≤y≤6,
∴點(1,3)、(4,6)在一次函數(shù)y=kx+b的圖象上或點(1,6)、(4,3)在一次函數(shù)y=kx+b的圖象上.
當(dāng)點(1,3)、(4,6)在一次函數(shù)y=kx+b的圖象上時,
$\left\{\begin{array}{l}{k+b=3}\\{4k+b=6}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=1}\\{b=2}\end{array}\right.$,
∴此時一次函數(shù)的解析式為y=x+2;
當(dāng)(1,6)、(4,3)在一次函數(shù)y=kx+b的圖象上時,
$\left\{\begin{array}{l}{k+b=6}\\{4k+b=3}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=-1}\\{b=7}\end{array}\right.$,
此時一次函數(shù)的解析式為y=-x+7.
故答案為:y=x+2或y=-x+7.

點評 本題考查了一次函數(shù)的性質(zhì)以及待定系數(shù)法求一次函數(shù)解析式,根據(jù)點的坐標(biāo)利用待定系數(shù)法求出一次函數(shù)解析式是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.閱讀理解:在實數(shù)范圍內(nèi),當(dāng)a>0且b>0時,我們由非負數(shù)的性質(zhì)知道($\sqrt{a}$-$\sqrt$)2≥0,所以a-2$\sqrt{ab}$+b≥0,即:a+b≥2$\sqrt{ab}$,當(dāng)且僅當(dāng)a=b時,等號成立,這就是數(shù)學(xué)上有名的“均值不等式”,若a與b的積為定值p(p>0),則a+b有最小值2$\sqrt{p}$;若a與b的和為定值q(q>0),則ab有最大值$\frac{{q}^{2}}{4}$,請根據(jù)上述內(nèi)容,回答下列問題.
(1)若x>0,則當(dāng)x=2時,代數(shù)式2x+$\frac{8}{x}$取最小值8;
(2)已知:y1與x-2成正比例函數(shù)關(guān)系,y2與x+2成反比例函數(shù)關(guān)系,且y=y1+y2,當(dāng)x=6時,y=9;當(dāng)x=-1時,y=2,求當(dāng)x>-2時y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.如圖,正方形網(wǎng)格中每個小正方形的邊長都是1,則在△ABC中,長度為無理數(shù)的邊及邊長是AB=$\sqrt{17}$,AC=2$\sqrt{5}$,BC=$\sqrt{13}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.拿一張正方形紙片ABCD(如圖),取它的四條邊的中點E,F(xiàn),G,H,連接AF,BG,CH,DE.沿這些連線剪4刀,便剪出中間這個較小的正方形(陰影部分).請試一試,若要剪出的小正方形的面積為5平方厘米,則正方形紙片ABCD的邊長為5厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.下列等式變形:
①若a=b,則$\frac{a}{x}$=$\frac{x}$
②若$\frac{a}{x}$=$\frac{x}$,則a=b
③若4a=7b,則$\frac{a}$=$\frac{4}{7}$
④若$\frac{a}$=$\frac{4}{7}$,則4a=7b
其中一定正確的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.若n表示正整數(shù),則n,-n,$\frac{1}{n}$的大小關(guān)系按從小到大排列是:-n<$\frac{1}{n}$≤n.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.解不等式$\frac{2x}{x-1}$>1
解:把不等式$\frac{2x}{x-1}$>1進行整理,得$\frac{2x}{x-1}$-1>0即$\frac{x+1}{x-1}$>0
則有(1)$\left\{\begin{array}{l}{x+1>0}\\{x-1>0}\end{array}\right.$或(2)$\left\{\begin{array}{l}{x+1<0}\\{x-1<0}\end{array}\right.$解不等組(1)得x>1,解不等式組(2)得x<-1
∴原不等式組的解集為x<-1或x>1
請根據(jù)以上解不等式的思想方法解不等式$\frac{3x}{2x-1}$>$\frac{5}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.計算:($\sqrt{2}$-$\sqrt{3}$)2016×($\sqrt{2}$+$\sqrt{3}$)2016=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.如圖,△ABC中,點D、E、F分別在邊AB、AC、BC上,且DE∥BC,EF∥AB,DE:BC=1:3,那么EF:AB的值為$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案