【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°DAC邊上的中點,過D點作DEDF,交AB于點E,交BC于點F,若AE=8,FC=6.

1)求EF的長.

2)求四邊形BEDF的面積.

【答案】1EF的長為10;(2S四邊形BEDF=49.

【解析】

1)首先連接BD,由已知等腰直角三角形ABC,可推出BDACBD=CD=AD,∠ABD=45°再由DEDF,可推出∠FDC=EDB,又等腰直角三角形ABC可得∠C=45°,所以△EDB≌△FDC,從而得出BE=FC=6,那么AB=14,則BC=14BF=8,再根據(jù)勾股定理求出EF的長;

2)由△EDB≌△FDC,可得S四邊形BEDF= SCDF+ SBDF=SBDC,再由DAC中點,可得SBDC=SABC,由此即可求得答案.

1)連接BD

∵等腰直角三角形ABC中,DAC邊上中點,

BDAC,BD=CD=AD,∠ABD=45°,

∴∠C=45°,

∴∠ABD=C,

又∵DEDF,

∴∠FDC+BDF=EDB+BDF,

∴∠FDC=EDB,

在△EDB與△FDC中,

,

∴△EDB≌△FDCASA),

BE=FC=6

AB=AE+BE=8+6=14,則BC=14,

BF=BC-CF=14-6=8

RtEBF中, EF2=BE2+BF2=62+82

EF=10,

答:EF的長為10

2)∵△EDB≌△FDC,

S四邊形BEDF=SBDE+SBDF=SCDF+ SBDF=SBDC,

DAC中點,

SBDC=SABC,

∵SABC=ABBC,AB=BC=14,

∴SABC==98

∴S四邊形BEDF=49.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一點A從數(shù)軸上表示+2的點開始移動,第一次先向左移動1個單位,再向右移動2個單位;第二次先向左移動3個單位,再向右移動4個單位;第三次先向左移動5個單位,再向右移動6個單位……

(1)寫出第一次移動后這個點在數(shù)軸上表示的數(shù)為 ;

(2)寫出第二次移動后這個點在數(shù)軸上表示的數(shù)為

(3)寫出第五次移動后這個點在數(shù)軸上表示的數(shù)為 ;

4寫出第次移動結(jié)果這個點在數(shù)軸上表示的數(shù)為 ;

(5)如果第次移動后這個點在數(shù)軸上表示的數(shù)為56,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形ABCD的頂點O在坐標原點,點B的坐標為(1,4),點A在第二象限,反比例函數(shù)的圖象經(jīng)過點A,則k的值是( )

A. ﹣2 B. ﹣4 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線l分別與x軸,y軸交于A,B兩點,與雙曲線(k≠0,x>0)分別交于D,E兩點.若點D的坐標為((3.1),點E的坐標為(1,n).

(1)分別求出直線l與雙曲線的解析式;

(2)求△EOD的面積;

(3)若將直線l向下平移m(m>O)個單位,當m為何位時,直線l與雙曲線有且只有一個交點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在以AB為直徑的半圓上,AB=4,∠CBA=30°,點D在AO上運動,點E與點D關(guān)于AC對稱:DF⊥DE于點D,并交EC的延長線于點F,下列結(jié)論:

①CE=CF;

②線段EF的最小值為

③當AD=1時,EF與半圓相切;

④當點D從點A運動到點O時,線段EF掃過的面積是4

其中正確的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是考古學家發(fā)現(xiàn)的古代錢幣的一部分合肥一中的小明正好學習了圓的知識他想求其外圓半徑,連接外圓上的兩點A,B,并使AB與內(nèi)圓相切于點D,CDAB交外圓于點C.測得CD=10 cm,AB=60 cm,則這個錢幣的外圓半徑為__cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩個全等的△ABC和△DBE按圖1方式擺放,其中∠ACB=∠DEB90°,∠A=∠D30°,點E落在AB上,DE所在直線交AC所在直線于F。

1)求證:AFEFDE

2)若將圖1中的△DBE繞點B順時針旋轉(zhuǎn)角α,且60°<α<180°,其他條件不變,如圖2,請直接寫出此時線段AF,EFDE之間的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=ax2+b與y=bx2+ax的圖象可能是(  )

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2-2bx+c.

(1)若拋物線的頂點坐標為(2,-3),求b,c的值;

(2)若b+c=0,是否存在實數(shù)x,使得相應的y的值為1?請說明理由;

(3)若c=b+2且拋物線在-2≤x≤2上的最小值是-3,求b的值.

查看答案和解析>>

同步練習冊答案