【題目】如圖,方格紙中的每個小正方形邊長都是個單位長度,的頂點均在格點上.建立平面直角坐標系后,點的坐標為,點的坐標為,點的坐標為

1)先將向左平移個單位長度,再向下平移個單位長度得到(點、的對應(yīng)點分別為、、),請在圖中畫出

2)再將繞點逆時針旋轉(zhuǎn)后得到(點、的對應(yīng)點分別為、、),試在圖中畫出,并直接寫出點的坐標.

【答案】1)見解析;(2,圖見解析

【解析】

1)分別將點A、BC向左平移4個單位長度,再向下平移2個單位長度得到點DE、F,然后順次連接;

2)分別將點D、E、F繞點O逆時針旋轉(zhuǎn)90°后得到點G、H、I,然后順次連接,并寫出點I的坐標.

1)如圖所示,RtDEF即為所求;

2)如圖,即為所求,其中點

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知在平面直角坐標系中,拋物線yx2+3xa2+a+2a1)的圖象交x軸于點A和點B(點A在點B左側(cè)),與y軸交于點C,頂點為E

1)如圖1,求線段AB的長度(用含a的式子表示)及拋物線的對稱軸;

2)如圖2,當拋物線的圖象經(jīng)過原點時,在平面內(nèi)是否存在一點P,使得以AB、E、P為頂點的四邊形能否成為平行四邊形?如果能,求出P點坐標;如果不能,請說明理由;

3)如圖3,當a3時,若M點為x軸上一動點,連結(jié)MC,將線段MC繞點M逆時針旋轉(zhuǎn)90°得到線段MN,連結(jié)AC、CNAN,則△ACN周長的最小值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小李經(jīng)營一家水果店,某日到水果批發(fā)市場批發(fā)一種水果.經(jīng)了解,一次性批發(fā)這種水果不得少于,超過時,所有這種水果的批發(fā)單價均為3.圖中折線表示批發(fā)單價(元)與質(zhì)量的函數(shù)關(guān)系.

1)求圖中線段所在直線的函數(shù)表達式;

2)小李用800元一次可以批發(fā)這種水果的質(zhì)量是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1是一種折疊門,由上下軌道和兩扇長寬相等的活頁門組成,整個活頁門的右軸固定在門框

上,通過推動左側(cè)活頁門開關(guān);圖2是其俯視圖簡化示意圖,已知軌道 ,兩扇活頁門的寬 ,固定,當點上左右運動時,的長度不變(所有結(jié)果保留小數(shù)點后一位).

(1),的長;

(2)當點從點向右運動60時,求點在此過程中運動的路徑長.

參考數(shù)據(jù):sin50°≈0.77, cos50°≈0.64, tan50°≈1.19, π3.14)

1 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)游泳館夏季推出兩種收費方式.方式一:先購買會員證,會員證200元,只限本人當年使用,憑證游泳每次需另付費10元:方式二:不購買會員證,每次游泳需付費20元.

1)若甲計劃今年夏季游泳的費用為500元,則選擇哪種付費方式游泳次數(shù)比較多?

2)若乙計劃今年夏季游泳的次數(shù)超過15次,則選擇哪種付費方式游泳花費比較少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明早上勻速騎車去上學,出發(fā)幾分鐘后,爸爸發(fā)現(xiàn)小明的作業(yè)本丟在家里,趕緊勻速騎車去追.爸爸剛出發(fā)時,小明也發(fā)現(xiàn)作業(yè)本丟在家里,立刻按原路原速返回, 后遇到爸爸,爸爸把作業(yè)本交給小明后立刻按原路原速返回家,小明繼續(xù)按原速騎車趕往學校.小明和爸爸相距的路程與小明出發(fā)的時間之間的關(guān)系如圖所示(爸爸給小明作業(yè)本的時間忽略不計).下列說法中,錯誤的是(

A.小明的騎車速度為B.爸爸騎車的速度是小明的

C.坐標為D.爸爸返回家時,小明共騎行了

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,ABACAB=,BC=,對角線ACBD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn),分別交BC,AD于點EF,下列說法:①在旋轉(zhuǎn)過程中,AF=CE. OB=AC,③在旋轉(zhuǎn)過程中,四邊形ABEF的面積為,④當直線AC繞點O順時針旋轉(zhuǎn)30°時,連接BF,DE則四邊形BEDF是菱形,其中正確的是(

A.①②④B.① ②C.①②③④D.② ③ ④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的一條弦,點C在半徑OA上且不與點A,O重合,過點CCDOA于點C,交弦AB于點E,交過點BO的切線于點D

1)求證:DBDE

2)若sinABO,BE10,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O為△ABC的外接圓,直線MN與⊙O相切于點C,弦BDMNACBD相交于點E

1)求證:∠CAB=CBD;

2)若BC=5BD =8,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案