學(xué)校為了獎(jiǎng)勵(lì)初三優(yōu)秀畢業(yè)生,計(jì)劃購(gòu)買(mǎi)一批平板電腦和一批學(xué)習(xí)機(jī),經(jīng)投標(biāo),購(gòu)買(mǎi)1臺(tái)平板電腦比購(gòu)買(mǎi)3臺(tái)學(xué)習(xí)機(jī)多600元,購(gòu)買(mǎi)2臺(tái)平板電腦和3臺(tái)學(xué)習(xí)機(jī)共需8400元.

(1)求購(gòu)買(mǎi)1臺(tái)平板電腦和1臺(tái)學(xué)習(xí)機(jī)各需多少元?

(2)學(xué)校根據(jù)實(shí)際情況,決定購(gòu)買(mǎi)平板電腦和學(xué)習(xí)機(jī)共100臺(tái),要求購(gòu)買(mǎi)的總費(fèi)用不超過(guò)168000元,且購(gòu)買(mǎi)學(xué)習(xí)機(jī)的臺(tái)數(shù)不超過(guò)購(gòu)買(mǎi)平板電腦臺(tái)數(shù)的1.7倍.請(qǐng)問(wèn)有哪幾種購(gòu)買(mǎi)方案?哪種方案最省錢(qián)?


解:(1)設(shè)購(gòu)買(mǎi)1臺(tái)平板電腦和1臺(tái)學(xué)習(xí)機(jī)各需x元,y元,

根據(jù)題意得:,

解得:

則購(gòu)買(mǎi)1臺(tái)平板電腦和1臺(tái)學(xué)習(xí)機(jī)各需3000元,800元;

(2)設(shè)購(gòu)買(mǎi)平板電腦x臺(tái),學(xué)習(xí)機(jī)(100﹣x)臺(tái),

根據(jù)題意得:,

解得:37.03≤x≤40,

正整數(shù)x的值為38,39,40,

當(dāng)x=38時(shí),y=62;x=39時(shí),y=61;x=40時(shí),y=60,

方案1:購(gòu)買(mǎi)平板電腦38臺(tái),學(xué)習(xí)機(jī)62臺(tái),費(fèi)用為114000+49600=163600(元);

方案2:購(gòu)買(mǎi)平板電腦39臺(tái),學(xué)習(xí)機(jī)61臺(tái),費(fèi)用為117000+48800=165800(元);

方案3:購(gòu)買(mǎi)平板電腦40臺(tái),學(xué)習(xí)機(jī)60臺(tái),費(fèi)用為120000+48000=168000(元),

則方案1最省錢(qián).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省無(wú)錫市九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分8分)如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)D,點(diǎn)O是AB上一點(diǎn),⊙O過(guò)B、D兩點(diǎn),且分別交AB、BC于點(diǎn)E、F.

(1)求證:AC是⊙O的切線;

(2)已知AB=10,BC=6,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A,C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線y=﹣x+3交AB,BC于點(diǎn)M,N,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)M,N.

(1)求反比例函數(shù)的解析式;

(2)若點(diǎn)P在x軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


方程(m﹣2)x2x+=0有兩個(gè)實(shí)數(shù)根,則m的取值范圍( 。

 

A.

m>

B.

m≤且m≠2

C.

m≥3

D.

m≤3且m≠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


對(duì)于任意實(shí)數(shù)m、n,定義一種運(yùn)運(yùn)算m※n=mn﹣m﹣n+3,等式的右邊是通常的加減和乘法運(yùn)算,例如:3※5=3×5﹣3﹣5+3=10.請(qǐng)根據(jù)上述定義解決問(wèn)題:若a<2※x<7,且解集中有兩個(gè)整數(shù)解,則a的取值范圍是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,∠AOC的平分線交AB于點(diǎn)D,E為BC的中點(diǎn),已知A(0,4)、C(5,0),二次函數(shù)y=x2+bx+c的圖象拋物線經(jīng)過(guò)A,C兩點(diǎn).

(1)求該二次函數(shù)的表達(dá)式;

(2)F、G分別為x軸,y軸上的動(dòng)點(diǎn),順次連接D、E、F、G構(gòu)成四邊形DEFG,求四邊形DEFG周長(zhǎng)的最小值;

(3)拋物線上是否在點(diǎn)P,使△ODP的面積為12?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知圓內(nèi)接正三角形的邊心距為1,則這個(gè)三角形的面積為( 。

  A. 2 B. 3 C. 4 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,AB是⊙O的直徑,點(diǎn)D是上一點(diǎn),且∠BDE=∠CBE,BD與AE交于點(diǎn)F.

(1)求證:BC是⊙O的切線;

(2)若BD平分∠ABE,求證:DE2=DF•DB;

(3)在(2)的條件下,延長(zhǎng)ED,BA交于點(diǎn)P,若PA=AO,DE=2,求PD的長(zhǎng)和⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


化簡(jiǎn):=  

查看答案和解析>>

同步練習(xí)冊(cè)答案