【題目】水果店以每箱60元新進一批蘋果共400箱,為計算總重量,從中任選30箱蘋果稱重,發(fā)現(xiàn)每箱蘋果重量都在10千克左右,現(xiàn)以10千克為標(biāo)準(zhǔn),超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負(fù)數(shù),將稱重記錄如下:
(1)求30箱蘋果的總重量
(2)若每千克蘋果的售價為10元,則賣完這批蘋果共獲利多少元
【答案】(1)300.9千克;(2)16120元.
【解析】
(1)根據(jù)有理數(shù)的加法運算以及正負(fù)數(shù)的意義即可求出答案;(2)根據(jù)30箱的總重量計算出每一箱的平均重量,然后求出400箱的總收入和總支出即可.
(1)5×(﹣0.2)+8×(﹣0.1)+2×0+6×0.1+8×0.2+1×0.5=0.9(千克)
∴30箱蘋果的總重量為:30×10+0.9=300.9千克
(2)由(1)可知:平均每一箱的重量為:300.9÷30=10.03(千克),
∴400箱的蘋果總重量為:10.03×400=4012(千克),
∴賣完這批蘋果共獲利4012×10﹣60×400=16120(元),
答:賣完這批蘋果共獲利16120元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖各圖是棱長為1cm的小正方體擺成的,如圖①中,從正面看有1個正方形,表面積為6cm2;如圖②中,從正面看有3個正方形,表面積為18cm2;如圖③,從正面看有6個正方形,表面積為36cm2;…
(1)第6個圖中,從正面看有多少個正方形?表面積是多少?
(2)第n個圖形中,從正面看有多少個正方形?表面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中線CM將△CMA折疊,使點A落在點D處,若CD恰好與MB垂直,且BC=4,則△ABC 的面積為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明有一套火車玩具,有兩列火車、一副軌道、一個隧道模型及一個站牌.特別之處:隧道模型也可以像火車一樣移動,當(dāng)火車頭進入隧道一瞬間會響起音樂,當(dāng)火車完全穿過隧道的一瞬間音樂會結(jié)束.已知甲火車長厘米,甲乙兩列火車的速度均為厘米/秒,軌道長米.
(1)將軌道圍成一個圓圈,將甲、乙兩列火車緊挨站牌放置,車頭方向相反,同時啟動,到兩車相撞用時秒,求乙火車的長度?
(2)在(1)的條件下,乙火車穿過靜止的隧道音樂響起了秒,求隧道的長度;
(3)在(1)(2)的條件下,軌道鋪成一條直線,把隧道模型、甲火車依次放在站牌的右側(cè),站牌靜止不動,甲火車頭與隧道相距(即).當(dāng)甲火車向左運動,隧道模型以不變的速度運動,音樂卻響了秒;當(dāng)音樂結(jié)束的一瞬間,甲火車頭與站牌相距乙火車車身的長度,請同學(xué)們思考一下,以站牌所在地為原點建立數(shù)軸,你能確定甲火車、隧道在運動前的位置嗎?如果可以,請畫出數(shù)軸并標(biāo)出運動前的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于( 。
A. B. 2 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小明有5張寫著不同數(shù)字的卡片,請你按要求抽出卡片,完成下列各題:
(1)若從中抽出2張卡片,且這2個數(shù)字的差最小,應(yīng)如何抽?最小值是多少?
(2)若從中抽出2張卡片,且這2個數(shù)字的積最大,應(yīng)如何抽?最小值是多少?
(3)若從中抽出4張卡片,運用加、減、乘、除、乘方、括號等運算符號,使得結(jié)果為24.請寫出運算式.(只需寫出一種)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0)、點B(3,0)、點C(4,y1),若點D(x2,y2)是拋物線上任意一點,有下列結(jié)論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個根為﹣1和
其中正確結(jié)論的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC于點D,AD=DC,點F在AD上,AB=FC,BF的延長線交AC于點E.
(1)求證:△ABD≌△CFD.
(2)求證:CF⊥AB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com