【題目】如圖,△ABC中,ADBC于點(diǎn)D,AD=DC,點(diǎn)FAD上,AB=FC,BF的延長(zhǎng)線(xiàn)交AC于點(diǎn)E.

(1)求證:△ABD≌△CFD.

(2)求證:CFAB.

【答案】1)見(jiàn)解析;(2)見(jiàn)解析.

【解析】

1)由已知可利用HL直接證明RtABDRtCFD

2)由全等三角形的性質(zhì)可得∠DCF=DAB,利用直角三角形兩銳角互余,通過(guò)等量代換可求出∠DCF+ABD=90°,可得CFAB.

證明:(1)∵ADBC,

∴∠ADB=ADC=90°

RtABDRtCFD中,,

RtABDRtCFDHL);

2)延長(zhǎng)CFAB于點(diǎn)G,

RtABDRtCFD,

∴∠DCF=DAB

∵∠DAB+ABD=90°,

∴∠DCF+ABD=90°

∴∠BGC=90°,即CFAB.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水果店以每箱60元新進(jìn)一批蘋(píng)果共400箱,為計(jì)算總重量,從中任選30箱蘋(píng)果稱(chēng)重,發(fā)現(xiàn)每箱蘋(píng)果重量都在10千克左右,現(xiàn)以10千克為標(biāo)準(zhǔn),超過(guò)10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負(fù)數(shù),將稱(chēng)重記錄如下:

1)求30箱蘋(píng)果的總重量

2)若每千克蘋(píng)果的售價(jià)為10元,則賣(mài)完這批蘋(píng)果共獲利多少元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,三角形△ABC為等腰直角三角形,AC=BCBCx軸于點(diǎn)D.

(1)A(-4,0),C(0,2),求點(diǎn)B的坐標(biāo);

(2)若∠EDB=ADC,問(wèn)∠ADE與∠CAD滿(mǎn)足怎樣的關(guān)系?并證明.

(3)AD平分∠BACA(-4,0),D(m,0),B的縱坐標(biāo)為n,試探究m、n之間滿(mǎn)足怎樣的關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方形ABCD中,長(zhǎng)方形ABCD的周長(zhǎng)為36厘米,BCAB2厘米.點(diǎn)E在線(xiàn)段AB上,且AE=3BE,動(dòng)點(diǎn)PA點(diǎn)出發(fā),在線(xiàn)段AD上以每秒1厘米的速度向終點(diǎn)D運(yùn)動(dòng);動(dòng)點(diǎn)QC點(diǎn)出發(fā),沿著射線(xiàn)CB以每秒5厘米的速度運(yùn)動(dòng),三角形APE的面積為S1,三角形EBQ的面積為S2,兩點(diǎn)同時(shí)出發(fā),當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒.

1)求AB、BC的長(zhǎng);

2)請(qǐng)用含t的式子分別表示S1S2;

3)它們出發(fā)幾秒時(shí),S1=S2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)少年在綠茵場(chǎng)上游戲小紅從點(diǎn)A出發(fā)沿線(xiàn)段AB運(yùn)動(dòng)到點(diǎn)B,小蘭從點(diǎn)C出發(fā),以相同的速度沿⊙O逆時(shí)針運(yùn)動(dòng)一周回到點(diǎn)C,兩人的運(yùn)動(dòng)路線(xiàn)如圖1所示,其中ACDB兩人同時(shí)開(kāi)始運(yùn)動(dòng),直到都停止運(yùn)動(dòng)時(shí)游戲結(jié)束其間他們與點(diǎn)C的距離y與時(shí)間x(單位秒)的對(duì)應(yīng)關(guān)系如圖2所示.則下列說(shuō)法正確的是( 。

A. 小紅的運(yùn)動(dòng)路程比小蘭的長(zhǎng)

B. 兩人分別在1.09秒和7.49秒的時(shí)刻相遇

C. 當(dāng)小紅運(yùn)動(dòng)到點(diǎn)D的時(shí)候,小蘭已經(jīng)經(jīng)過(guò)了點(diǎn)D

D. 4.84秒時(shí),兩人的距離正好等于⊙O的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)

1該二次函數(shù)圖象的對(duì)稱(chēng)軸是x

2若該二次函數(shù)的圖象開(kāi)口向下,當(dāng)時(shí) 的最大值是2,求當(dāng)時(shí), 的最小值;

3)若對(duì)于該拋物線(xiàn)上的兩點(diǎn), 當(dāng), 時(shí),均滿(mǎn)足請(qǐng)結(jié)合圖象直接寫(xiě)出的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知∠B=∠C90°AM平分∠DAB,DM平分∠ADC.

(1)求證:MBC的中點(diǎn).

(2) 求證:ADABCD.

(3)SAMD=______S四邊形ABCD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知⊙OABC的外接圓,且AB=BC=CD,ABCD,連接BD.

(1)求證:BD是⊙O的切線(xiàn);

(2)若AB=10,cosBAC=,求BD的長(zhǎng)及⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD=CD,以AB為直徑的⊙O經(jīng)過(guò)點(diǎn)C,連接AC,OD交于點(diǎn)E.

(1)證明:ODBC;

(2)若tanABC=2,證明:DA與⊙O相切;

(3)在(2)條件下,連接BD交于⊙O于點(diǎn)F,連接EF,若BC=1,求EF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案