如圖,拋物線y=ax2+bx-3a經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求此拋物線的解析式;
(2)已知點D(m,-m-1)在第四象限的拋物線上,求點D關(guān)于直線BC對稱的點D'的坐標(biāo).
(3)在(2)的條件下,連接BD,問在x軸上是否存在點P,使∠PCB=∠CBD?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.
(1)將A(-1,0)、C(0,-3)代入拋物線y=ax2+bx-3a中,
a-b-3a=0
-3a=-3

解得
a=1
b=-2
,
∴y=x2-2x-3;

(2)將點D(m,-m-1)代入y=x2-2x-3中,得
m2-2m-3=-m-1,
解得m=2或-1,
∵點D(m,-m-1)在第四象限,
∴D(2,-3),
∵直線BC解析式為y=x-3,
∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3-2=1,
∴點D關(guān)于直線BC對稱的點D'(0,-1);

(3)存在.
過D點作DE⊥x軸,垂足為E,交直線BC于F點(如圖),
∵∠PCB=∠CBD,
∴CPBD,
又∵CDx軸,四邊形PCDB為平行四邊形,

∴△OCP≌△EDB,
∴OP=BE=1,
設(shè)CP與BD相交于M點(m,3m-9),
易求BD解析式為:y=3x-9,
由BM=CM,得到關(guān)于m的方程,解方程后,得m=
9
4

于是,M點坐標(biāo)為:M(
9
4
,-
9
4
);
于是CM解析式為:y=
1
3
x-3,
令CM方程中,y=0,則x=9,
所以,P點坐標(biāo)為:P(9,0),
∴P(1,0),或(9,0).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖一次函數(shù)圖象與x軸y軸交于A(6,0)B(0,2
3
)線段AB的垂直平分線交x軸于點C交y軸于點D
求:(1)求這個一次函數(shù)的解析式;
(2)過A,B,C三點的拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,是一條高速公路的隧道口在平面直角坐標(biāo)系上的示意圖,點A和A1、點B和B1分別關(guān)于y軸對稱,隧道拱部分BCB1為一條拋物線,最高點C離路面AA1的距離為8米,點B離路面為6米,隧道的寬度AA1為16米;則隧道拱拋物線BCB1的函數(shù)解析式______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

有一個拋物線形拱橋,其最大高度為16m,跨度為40m,現(xiàn)把它的示意圖放在平面直角坐標(biāo)系中如圖,求拋物線的解析式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某市人民廣場上要建造一個圓形的噴水池,并在水池中央垂直安裝一個柱子OP,柱子頂端P處裝上噴頭,由P處向外噴出的水流(在各個方向上)沿形狀相同的拋物線路徑落下(如圖所示).若已知OP=3米,噴出的水流的最高點A距水平面的高度是4米,離柱子OP的距離為1米.
(1)求這條拋物線的解析式;
(2)若不計其它因素,水池的半徑至少要多少米,才能使噴出的水流不至于落在池外?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2+bx+c經(jīng)過點(1,-4)和(-1,2).求拋物線解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)y=ax2+bx+c(b、c為常數(shù)).
(1)若二次函數(shù)的圖象經(jīng)過A(-2,-3)和B(2,5)兩點,求此二次函數(shù)的關(guān)系式;
(2)求此二次函數(shù)圖象的頂點坐標(biāo)及對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一座隧道的截面由拋物線和長方形構(gòu)成,長方形的長為8m,寬為2m,隧道最高點P位于AB的中央且距地面6m,建立如圖所示的坐標(biāo)系:
(1)求拋物線的解析式;
(2)一輛貨車高4m,寬2m,能否從該隧道內(nèi)通過,為什么?
(3)如果隧道內(nèi)設(shè)雙行道,那么這輛貨車是否可以順利通過,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)探究新知:
①如圖1,已知ADBC,AD=BC,點M,N是直線CD上任意兩點.
求證:△ABM與△ABN的面積相等.
②如圖2,已知ADBE,AD=BE,ABCDEF,點M是直線CD上任一點,點G是直線EF上任一點,試判斷△ABM與△ABG的面積是否相等,并說明理由.
(2)結(jié)論應(yīng)用:
如圖3,拋物線y=ax2+bx+c的頂點為C(1,4),交x軸于點A(3,0),交y軸于點D,試探究在拋物線y=ax2+bx+c上是否存在除點C以外的點E,使得△ADE與△ACD的面積相等?若存在,請求出此時點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案