觀察下列式子:
32+42=52;82+62=102;152+82=172;242+102=262;…
(1)找出規(guī)律,并根據(jù)此規(guī)律寫出接下來第5個式子:
 
;
(2)寫出這一規(guī)律:
 
;
(3)在Rt△ABC中,∠C=90°,AC=39999,BC=400,你能快速求出AB嗎?
分析:(1)等式的左邊第一個加數(shù)是從2開始連續(xù)的自然數(shù)的平方與1差的平方,第二個加數(shù)是連續(xù)偶數(shù)的平方,計算結(jié)果是從2開始連續(xù)的自然數(shù)的平方與1和的平方;
(2)由(1)直接寫出規(guī)律;
(3)寫成(2)中的形式,可解決問題.
解答:解:(1)32+42=(22-1)2+(2×2)2=52=(22+1)2,
82+62=(32-1)2+(2×3)2=102=(32+1)2,
152+82=(42-1)2+(2×4)2=172=(42+1)2,
242+102=(52-1)2+(2×5)2=262=(52+1)2,

接下來第5個式子為:(62-1)2+(2×7)2=(62+1)2,
即352+122=372;

(2)這一規(guī)律為:當n≥2時,(n2-1)2+(2n)2=(n2+1)2;

(3)由勾股定理得:AC2+BC2=AB2,
即399992+4002=(2002-1)2+(2×200)2=(2002+1)2,
所以AB=
(2002+1)2
=40001.
點評:此題考查的規(guī)律為:當n≥2時,(n2-1)2+(2n)2=(n2+1)2
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

27、請觀察下列式子:32-12=8=8×1;52-32=16=8×2;72-52=24=8×3;92-72=32=8×4;112-92=40=8×5;
(1)從以上的過程中,你發(fā)現(xiàn)了什么規(guī)律?請用文字敘述;
(2)寫出用正整數(shù)n表示一般規(guī)律的等式,并驗證你所得到的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察下列式子:32-12=8,52-32=16,72-52=24,92-72=32,…根據(jù)以上式子的特點,試用含有n的等式表示上述規(guī)律,并用一句簡潔的話概括此規(guī)律.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察下列式子.
①32-12=(3+1)(3-1)=8,
②52-32=(5+3)(5-3)=16,
③72-52=(7+5)(7-5)=24,
④92-72=(9+7)(9-7)=32.
求(1)20112-20092=
8040
8040
;
(2)結(jié)論:任意兩個連續(xù)奇數(shù)的平方差一定是
8的倍數(shù)
8的倍數(shù)
,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察下列式子.
①32-12=(3+1)(3-1)=8;
②52-32=(5+3)(5-3)=16;
③72-52=(7+5)(7-5)=24;
④92-72=(9+7)(9-7)=32.
(1)求212-192=
80
80

(2)猜想:任意兩個連續(xù)奇數(shù)的平方差一定是
這兩個數(shù)和的2倍
這兩個數(shù)和的2倍
,并給予證明.

查看答案和解析>>

同步練習冊答案