【題目】如圖1,在平面直角坐標(biāo)系中,直線:軸相交于B,與軸相交于點(diǎn)A.直線:經(jīng)過原點(diǎn),并且與直線相交于C點(diǎn).

(1)ΔOBC的面積;

(2)如圖2,在軸上有一動(dòng)點(diǎn)E,連接CE.CE+BE是否有最小值,如果有,求出相應(yīng)的點(diǎn)E的坐標(biāo)及CE+BE的最小值;如果沒有,請(qǐng)說明理由;

(3)如圖3,在(2)的條件下,以CE為一邊作等邊ΔCDE,D點(diǎn)正好落在軸上.ΔDCE繞點(diǎn)D順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角度為(0°≤≤360),記旋轉(zhuǎn)后的三角形為ΔDCE′,點(diǎn)C,E的對(duì)稱點(diǎn)分別為C′,E′.在旋轉(zhuǎn)過程中,設(shè)C′E′所在的直線與直線相交于點(diǎn)M,與軸正半軸相交于點(diǎn)N.當(dāng)ΔOMN為等腰三角形時(shí),求線段ON的長(zhǎng)?

【答案】(1) ;(2)E6,0),最小值為.(3) ON3-6333+3.

【解析】

1)求出點(diǎn)B、C的坐標(biāo),就可以求出OBC的面積;
2)作點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)P,作射線BP,過點(diǎn)CCHBPx軸于點(diǎn)E,則CE+BE有最小值;
3)分兩種情況:∠MON為等腰三角形的頂角或底角.

1)如圖1,易求點(diǎn)B9,0),解方程組 得: ;
故點(diǎn)C,),
SOBC=×9×=
2)如圖2,作點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)P,作射線BP,過點(diǎn)EEHBP于點(diǎn)H,取BE中點(diǎn)I,連接HI

易知:∠BOC=OBC=OBP=30°,∠BHE=90°
IE=IB,
IH=IE=IB
∵∠BEH=60°,
∴△EIH是等邊三角形,
EH=EI=EB,
∴當(dāng)C、E、H三點(diǎn)共線且CHBP時(shí),CH的長(zhǎng)度最小,即CE+BE有最小值;


OC=CB=3,∠BCH=30°,∠BHC=90°
BH=BC=
CH=
=
CE+BE有最小值為
RtBEH中,∵∠EBH=30°
EH=BE,
BE2-EH2=BH2
BE=3
E60).
3OMN為等腰三角形,分三種情況:
①當(dāng)∠OMN=ONM時(shí),
∵∠MON=30°


∴∠OMN=ONM=75°
如圖3,當(dāng)∠OMN=ONM=75°時(shí),∠C′DN=45°,∠DC′N=60°,
∴∠CDC′=α=15°,過點(diǎn)NNGDC′G
可求得GC′= ,
ON
如圖4,當(dāng)∠OMN=ONM=75°時(shí),∠C′DN=45°,旋轉(zhuǎn)角α=195°
過點(diǎn)NNGDC′G,
可求得DN=,
ON=3-,
②如圖5,當(dāng)∠OMN=MON=30°時(shí),∠ONM=120°,
此時(shí)旋轉(zhuǎn)角α=60°,易得ON=6

③如圖6,圖7,當(dāng)∠ONM=NOM=30°時(shí),
∴∠OMN=120°,
∵∠DE′C′=60°α=150°330°,
DE′OM
過點(diǎn)E′E′Gx軸于G,可求得DN=3
ON333
綜上所述,ON3-6333+3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中有正方形AOBCO為坐標(biāo)原點(diǎn),點(diǎn)AB分別在y軸、x軸正半軸上,點(diǎn)P、EF分別為邊BC、ACOB上的點(diǎn),EFOPM

1)如圖1,若點(diǎn)E與點(diǎn)A重合,點(diǎn)A坐標(biāo)為(0,8),OF3,求P點(diǎn)坐標(biāo);

2)如圖2,若點(diǎn)E與點(diǎn)A重合,且P為邊BC的中點(diǎn),求證:CM=2CP;

3)如圖3,若點(diǎn)M為線段OP的中點(diǎn),連接ABEF于點(diǎn)N,連接NP,試探究線段OPNP的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是邊長(zhǎng)為24的等邊三角形,CDE是等腰三角形,其中DCDE10,∠CDE120°,點(diǎn)EBC邊上,點(diǎn)FBE的中點(diǎn),連接AD、DF、AF,則AF的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

對(duì)于線段的垂直平分線我們有如下結(jié)論:到線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上.即如圖,若PAPB,則點(diǎn)P在線段AB的垂直平分線上.

請(qǐng)根據(jù)閱讀材料,解決下列問題:

如圖,直線CD是等邊ABC的對(duì)稱軸,點(diǎn)DAB上,點(diǎn)E是線段CD上的一動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)CD重合),連結(jié)AE、BE,ABE經(jīng)順時(shí)針旋轉(zhuǎn)后與BCF重合.

1)旋轉(zhuǎn)中心是點(diǎn)   ,旋轉(zhuǎn)了   (度);

2)當(dāng)點(diǎn)E從點(diǎn)D向點(diǎn)C移動(dòng)時(shí),連結(jié)AF,設(shè)AFCD交于點(diǎn)P,在圖中將圖形補(bǔ)全,并探究APC的大小是否保持不變?若不變,請(qǐng)求出APC的度數(shù);若改變,請(qǐng)說出變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線于對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.

1)如圖1,在ABC中,CD為角平分線,∠A=40°B=60°,求證:CDABC的完美分割線.

2)在ABC中,∠A=48°CDABC的完美分割線,且ACD為等腰三角形,求∠ACB的度數(shù).

3)如圖2,ABC中,AC=2,BC=CDABC的完美分割線,且ACD是以CD為底邊的等腰三角形,求完美分割線CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用A、B兩種機(jī)器人搬運(yùn)大米,A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)20袋大米,A型機(jī)器人搬運(yùn)700袋大米與B型機(jī)器人搬運(yùn)500袋大米所用時(shí)間相等.求A、B型機(jī)器人每小時(shí)分別搬運(yùn)多少袋大米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°AB=AC,直線m經(jīng)過點(diǎn)A,BD直線m, CE直線m,垂足分別為點(diǎn)DE.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=ACD、AE三點(diǎn)都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.

3拓展與應(yīng)用:如圖3,D、ED、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(DA、E三點(diǎn)互不重合),點(diǎn)FBAC平分線上的一點(diǎn),ABFACF均為等邊三角形,連接BDCE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABDACD關(guān)于直線AD對(duì)稱;在射線AD上取點(diǎn)E,連接BE, CE,如圖:在射線AD上取點(diǎn)F連接BF, CF,如圖,依此規(guī)律,第n個(gè)圖形中全等三角形的對(duì)數(shù)是(

A.nB.2n-1C.D.3(n+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2經(jīng)過平移得到拋物線y=x2﹣2x,其對(duì)稱軸與兩拋物線所圍成的陰影部分的面積是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案