【題目】如圖,已知凸五邊形ABCDE的邊長(zhǎng)均相等,且∠DBE=∠ABE+∠CBD,AC=1,則BD必定滿足(
A.BD<2
B.BD=2
C.BD>2
D.以上情況均有可能

【答案】A
【解析】證明:∵AE=AB, ∴∠ABE=∠AEB,同理∠CBD=∠CDB
∵∠ABC=2∠DBE,
∴∠ABE+∠CBD=∠DBE,
∵∠ABE=∠AEB,∠CBD=∠CDB,
∴∠AEB+∠CDB=∠DBE,
∴∠AED+∠CDE=180°,
∴AE//CD,
∵AE=CD,
∴四邊形AEDC為平行四邊形.
∴DE=AC=AB=BC.
∴△ABC是等邊三角形,
∴BC=CD=1,
在△BCD中,∵BD<BC+CD,
∴BD<2.
故選A.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行四邊形的判定與性質(zhì)(若一直線過平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若三角形兩條邊的長(zhǎng)分別是 3,5,第三條邊的長(zhǎng)是整數(shù),則第三條邊的長(zhǎng)的最大值是(

A.2B.3C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】順次連結(jié)矩形四邊中點(diǎn)所得的四邊形一定是( )
A.菱形
B.矩形
C.正方形
D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=x+1交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)A1、A2、A3,…在x軸的正半軸上,點(diǎn)B1、B2、B3,…在直線l上.若△OB1A1,△A1B2A2,△A2B3A3,…均為等邊三角形,則△A6B7A7的周長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角三角尺繞著它的一條直角邊旋轉(zhuǎn)一周后形成的幾何體是(
A.圓柱
B.球體
C.圓錐
D.一個(gè)不規(guī)則的幾何體

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C∠ABC一邊上一點(diǎn)

(1)按下列要求進(jìn)行尺規(guī)作圖:作線段BC的中垂線DE,E為垂足.

②作∠ABC的平分線BD.

③連結(jié)CD,并延長(zhǎng)交BAF.

(2)若∠ABC=62°,求∠BFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】人體中成熟的紅細(xì)胞的平均直徑為0.0000077m,0.0000077用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列長(zhǎng)度的3條線段,能首尾依次相接組成三角形的是(  )

A.13,5B.3,46

C.56,11D.85,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(x,y),且|x﹣2|+|y+4|=0,則點(diǎn)P在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案