【題目】在我們所學的課本中,多項式與多項式相乘可以用幾何圖形的面積來表示.例如,(2a+b)(a+b)=2a2+3ab+b2就可以用圖(1)來表示.請你根據(jù)此方法寫出圖(2)中圖形的面積所表示的代數(shù)恒等式:____________.
【答案】(a+2b)(2a+b)=2a2+5ab+2b2
【解析】試題分析:圖②的面積可以用長為a+a+b,寬為b+a+b的長方形面積求出,也可以由四個正方形與5個小長方形的面積之和求出,表示出即可.
解:根據(jù)圖形列得:(a+2b)(2a+b)=2a2+5ab+2b2.
故答案為:(a+2b)(2a+b)=2a2+5ab+2b2.
考點:多項式乘多項式.
點評:此題考查了多項式乘以多項式法則,熟練掌握法則是解本題的關鍵.
【題型】填空題
【結束】
18
【題目】若一個正整數(shù)能表示為兩個正整數(shù)的平方差,則稱這個正整數(shù)為“智慧數(shù)”(如3=22-12,16=52-32,則3和16是智慧數(shù)).已知按從小到大的順序構成如下數(shù)列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,…則第2 013個“智慧數(shù)”是______.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,請在下列四個關系中,選出兩個恰當?shù)年P系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點D在反比例函數(shù)y= 的圖象上,過點D作x軸的平行線交y軸于點B(0,3).過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC= .
(1)求反比例函數(shù)y= 和直線y=kx+b的解析式;
(2)連接CD,試判斷線段AC與線段CD的關系,并說明理由;
(3)點E為x軸上點A右側(cè)的一點,且AE=OC,連接BE交直線CA與點M,求∠BMC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一列有理數(shù)-1,2,-3,4,-5,6,…如圖排序,根據(jù)圖中的排列規(guī)律可知,“峰1”中峰頂?shù)奈恢?/span>(C的位置)是有理數(shù)4,那么“峰4”中C的位置是有理數(shù)________,有理數(shù)“2018”應排在A,B,C,D,E中的________位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a,b,c分別是△ABC的三邊長,且滿足2a4+2b4+c4=2a2c2+2b2c2,則△ABC是( )
A. 等腰三角形 B. 等腰直角三角形
C. 直角三角形 D. 等腰三角形或直角三角形
【答案】B
【解析】解析:∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,
∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,
∴c=2a,c=2b,
∴a=b,且a2+b2=c2,
∴△ABC為等腰直角三角形.
故選B.
【題型】單選題
【結束】
11
【題目】將圖1中陰影部分的小長方形變換到圖2的位置,你能根據(jù)兩個圖形的面積關系得到的數(shù)學公式是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是生活中常見的月歷表,你對它了解嗎?
(1)如果下表是另一個月的月歷表,a表示該月中某一天,b,c,d是該月中其他3天,那么b,c,d與a有什么關系?b=________;c=________;d=________(用含a的式子填空).
(2)用一個長方形框圈出月歷表中的三個數(shù)(如上表中的陰影),若這三個數(shù)之和等于51,則這三個數(shù)各是多少?
(3)這樣圈出的三個數(shù)之和可能是64嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥EF,BC⊥CD于點C,∠ABC=30°,∠DEF=45°,則∠CDE等于( )
A. 105° B. 75° C. 135° D. 115°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上點 A 表示的有理數(shù)為﹣4,點 B 表示的有理數(shù)為 6,點 P 從 點 A 出發(fā)以每秒 2 個單位長度的速度在數(shù)軸上沿由 A 到 B 方向運動,當點 P 到 達點 B 后立即返回,仍然以每秒 2 個單位長度的速度運動至點 A 停止運動.設 運動時間為 t(單位:秒).
(1)求 t=2 時點 P 表示的有理數(shù);
(2)求點 P 是 AB 的中點時 t 的值;
(3)在點 P 由點 A 到點 B 的運動過程中,求點 P 與點 A 的距離(用含 t 的代數(shù)式表示);
(4)在點 P 由點 B 到點 A 的返回過程中,點 P 表示的有理數(shù)是多少(用含 t 的 代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是正方形ABCD對角線AC上一點,EF⊥AB,EG⊥BC,垂足分別為F,G,若正方形ABCD的周長是40cm.
(1)求證:四邊形BFEG是矩形;
(2)求四邊形EFBG的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com