【題目】如圖,ABEF,BCCD于點C,ABC=30°,DEF=45°,則∠CDE等于(  )

A. 105° B. 75° C. 135° D. 115°

【答案】A

【解析】CM,GNAB平行,利用與平行線中一條直線平行,與另一條也平行得到AB,CM,GN,EF都平行,利用兩直線平行內(nèi)錯角相等得到三對內(nèi)錯角相等,進而求出∠CDG與∠GDE的度數(shù),由∠CDG+GDE即可求出∠CDE的度數(shù).

CMAB,DNAB,

ABEF,得到ABCMDNEF,

∴∠ABC=BCM=30°,DEF=GDE=45°,MCD=CDG,

BCCD,∴∠BCD=90°,

∴∠MCD=CDG=60°,

∴∠CDE=CDG+GDE=105°.

故選:A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BAD的平分線與∠ADC的平分線相交于點E,∠ABC的平分線與∠BCD的平分線相交于點F,則∠E與∠F的數(shù)量關(guān)系是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y= 過點A(2,4),B(0,3)、題目中的矩形部分是一段因墨水污染而無法辨認的文字.

(1)根據(jù)現(xiàn)有的信息,請求出題中的一次函數(shù)的解析式.

(2)根據(jù)關(guān)系式畫出這個函數(shù)圖象.

(3)過點B能不能畫出一直線BCABO(O為坐標原點)分成面積比為1:2的兩部分?如能,可以畫出幾條,并求出其中一條直線所對應的函數(shù)關(guān)系式,其它的直接寫出函數(shù)關(guān)系式;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在我們所學的課本中,多項式與多項式相乘可以用幾何圖形的面積來表示.例如,(2a+b)(a+b)=2a2+3ab+b2就可以用圖(1)來表示.請你根據(jù)此方法寫出圖(2)中圖形的面積所表示的代數(shù)恒等式:____________.

【答案】(a+2b)(2a+b)=2a2+5ab+2b2

【解析】試題分析:圖的面積可以用長為a+a+b,寬為b+a+b的長方形面積求出,也可以由四個正方形與5個小長方形的面積之和求出,表示出即可.

解:根據(jù)圖形列得:(a+2b)(2a+b=2a2+5ab+2b2

故答案為:(a+2b)(2a+b=2a2+5ab+2b2

考點:多項式乘多項式.

點評:此題考查了多項式乘以多項式法則,熟練掌握法則是解本題的關(guān)鍵.

型】填空
結(jié)束】
18

【題目】若一個正整數(shù)能表示為兩個正整數(shù)的平方差,則稱這個正整數(shù)為智慧數(shù)(如3=22-1216=52-32,則316是智慧數(shù)).已知按從小到大的順序構(gòu)成如下數(shù)列:35,78,911,12,13,15,1617,19,20,21,2324,25,則第2 013智慧數(shù)______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中AB=AC=4,∠C=72°,D是AB中點,點E在AC上,DE⊥AB,則cosA的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論:①b<2a;②a+2c﹣b>0;③b>a>c;④b2+2ac<3ab.其中正確結(jié)論的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是邊長為4 的等邊△ABC的內(nèi)心,將△OBC繞點O逆時針旋轉(zhuǎn)30°得到△OB1C1 , B1C1交BC于點D,B1C1交AC于點E,則DE=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了切實關(guān)注、關(guān)愛貧困家庭學生,某校對全校各班貧困家庭學生的人數(shù)情況進行了統(tǒng)計,以便國家精準扶貧政策有效落實.統(tǒng)計發(fā)現(xiàn)班上貧困家庭學生人數(shù)分別有2名、3名、4名、5名、6名,共五種情況.并將其制成了如下兩幅不完整的統(tǒng)計圖:
(1)求該校一共有多少個班?并將條形圖補充完整;
(2)某愛心人士決定從2名貧困家庭學生的這些班級中,任選兩名進行幫扶,請用列表法或樹狀圖的方法,求出被選中的兩名學生來自同一班級的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 在平面直角坐標系中的位置如圖所示.

(1)作關(guān)于點成中心對稱的 .

(2)將向右平移4個單位,作出平移后的.

(3)在軸上求作一點,使的值最小

查看答案和解析>>

同步練習冊答案