【題目】如圖,在△ABC中,已知∠BAC=450,AD⊥BC于點D,BD=2,DC=3,求AD的長。某同學靈活運用軸對稱知識,將圖形進行翻折變換,巧妙地解答了此題。請按照這位同學的思路,探究并解答下列問題:
(1)分別以AB,AC為對稱軸,作出△ABD,△ACD的軸對稱圖形,點D的對稱點分別為E,F,延長EB,FC交于點G,證明四邊形AEGF是正方形;
(2)設(shè)AD=x,建立關(guān)于x的方程模型,求出AD的值。
【答案】(1)見解析;(2)AD=6.
【解析】
(1)先根據(jù)△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根據(jù)∠E=∠ADB=90°,∠F=∠ADC=90°判定四邊形AEGF是矩形, 最后由AE=AF從而說明矩形AEGF是正方形;
(2)利用勾股定理,建立關(guān)于x的方程(x-2)2+(x-3)2=52,求出AD=x=6.
(1)證明:由題意可得:△ABD≌△ABE,△ACD≌△ACF.
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°,
∴∠EAF=90°.
又∵AD⊥BC,
∴∠E=∠ADB=90°,∠F=∠ADC=90°.
∴四邊形AEGF是矩形,
又∵AE=AD,AF=AD
∴AE=AF.
∴矩形AEGF是正方形.
(2)設(shè)AD=x,則AE=EG=GF=x.
∵BD=2,DC=3
∴BE=2,CF=3
∴BG=x2,CG=x3
在Rt△BGC中,BG2+CG2=BC2,
∴(x2)2+(x3)2=52.
化簡得,x25x6=0
解得x1=6,x2=1(舍去)
所以AD=x=6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6cm,∠A=60°,點E以1cm/s的速度沿AB邊由A向B勻速運動,同時點F以2cm/s的速度沿CB邊由C向B運動,F到達點B時兩點同時停止運動.設(shè)運動時間為t秒,當△DEF為等邊三角形時,t的值為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系內(nèi),已知點P(3,3),A(0,b)是y軸上一點,過P作PA的垂線交x軸于B(a,0),則稱Q(a,b)為點P的一個關(guān)聯(lián)點。
(1)寫出點P的不同的兩個關(guān)聯(lián)點的坐標是 、 ;
(2)若點P的關(guān)聯(lián)點Q(x,y)滿足5x-3y=14,求出Q點坐標;
(3)已知C(-1,-1)。若點A、點B均在所在坐標軸的正半軸上運動,求△CAB的面積最大值,并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E為CD上一點,F(xiàn)為BC邊延長線上一點,且CE=CF.BE與DF之間有怎樣的關(guān)系?請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線經(jīng)過A(﹣4,0)、B(0,﹣4)、C(2,0)三點,若點M為第三象限內(nèi)拋物線上一動點,△AMB的面積為S,則S的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,連接BD,且BD=CD,過點A作AM⊥BD于點M,過點D作DN⊥AB于點N,且DN=,在DB的延長線上取一點P,滿足∠ABD=∠MAP+∠PAB,則AP=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課本拓展
舊知新意:
我們?nèi)菀鬃C明,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.那么,三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在怎樣的數(shù)量關(guān)系呢?
嘗試探究
(1)如圖1,∠DBC與∠ECB分別為△ABC的兩個外角,試探究∠A與∠DBC+∠ECB之間存在怎樣的數(shù)量關(guān)系?為什么?
初步應(yīng)用:
(2)如圖2,在△ABC紙片中剪去△CED,得到四邊形ABDE,∠1=130°,則∠2-∠C=______;
(3)小明聯(lián)想到了曾經(jīng)解決的一個問題:如圖3,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,∠P與∠A有何數(shù)量關(guān)系?請利用上面的結(jié)論直接寫出答案______.
3拓展提升:
(4)如圖4,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,∠P與∠A、∠D有何數(shù)量關(guān)系?為什么?(若需要利用上面的結(jié)論說明,可直接使用,不需要說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DO平分∠AOC,OE平分∠BOC,若OA⊥OB,
(1)當∠BOC=30°,∠DOE=_______________; 當∠BOC=60°,∠DOE=_______________;
(2)通過上面的計算,猜想∠DOE的度數(shù)與∠AOB有什么關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com