【題目】如圖是某品牌太陽能熱火器的實(shí)物圖和橫斷面示意圖,已知真空集熱管與支架所在直線相交于水箱橫斷面的圓心,支架與水平面垂直,厘米,,另一根輔助支架厘米,

1)求垂直支架的長(zhǎng)度;(結(jié)果保留根號(hào))

2)求水箱半徑的長(zhǎng)度.(結(jié)果保留三個(gè)有效數(shù)字,參考數(shù)據(jù):

【答案】1218.5cm

【解析】

1)首先弄清題意,了解每條線段的長(zhǎng)度與線段之間的關(guān)系,在△CDE中利用三角函數(shù)sin60°=,求出CD的長(zhǎng).

2)首先設(shè)出水箱半徑OD的長(zhǎng)度為x厘米,表示出CO,AO的長(zhǎng)度,根據(jù)直角三角形的性質(zhì)得到CO=AO,再代入數(shù)計(jì)算即可得到答案.

解:(1)在中,,

垂直支架的長(zhǎng)度

2)設(shè)水箱半徑OD的長(zhǎng)度為x厘米,則CO=+x)厘米,AO=150+x)厘米,

∵∠BAC=30°

∴CO=AO,

+x=150+x),

解得:x=150-76=150-13148≈185cm

水箱半徑的長(zhǎng)度為18.5cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB26,PAB(不與點(diǎn)AB重合)的任一點(diǎn),點(diǎn)CDO上的兩點(diǎn),若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.

(1)若∠BPC=∠DPC60°,則∠CPD是直徑AB的“回旋角”嗎?并說明理由;

(2)的長(zhǎng)為π,求“回旋角”∠CPD的度數(shù);

(3)若直徑AB的“回旋角”為120°,且△PCD的周長(zhǎng)為24+13,直接寫出AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)到直線的距離即為點(diǎn)到直線的垂線段的長(zhǎng).

1)如圖1,取點(diǎn)M1,0),則點(diǎn)M到直線lyx1的距離為多少?

2)如圖2,點(diǎn)P是反比例函數(shù)y在第一象限上的一個(gè)點(diǎn),過點(diǎn)P分別作PMx軸,作PNy軸,記P到直線MN的距離為d0,問是否存在點(diǎn)P,使d0?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

3)如圖3,若直線ykx+m與拋物線yx24x相交于x軸上方兩點(diǎn)A、BAB的左邊).且∠AOB90°,求點(diǎn)P20)到直線ykx+m的距離最大時(shí),直線ykx+m的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,點(diǎn)E,F分別在邊BC,AD上,BEDF,∠AEC90°

1)求證:四邊形AECF是矩形;

2)連接BF,若AB4,∠ABC60°BF平分∠ABC,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC中,∠ACB90°,ACBCMBC邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),連接AM,以點(diǎn)A為中心,將線段AM逆時(shí)針旋轉(zhuǎn)135°,得到線段AN,連接BN

1)依題意補(bǔ)全圖2;

2)求證:∠BAN=∠AMB;

3)點(diǎn)P在線段BC的延長(zhǎng)線上,點(diǎn)M關(guān)于點(diǎn)P的對(duì)稱點(diǎn)為Q,寫出一個(gè)PC的值,使得對(duì)于任意的點(diǎn)M,總有AQBN,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖所示.有下列結(jié)論:①b24ac0;②abc0;③8a+c0;④9a+3b+c0;⑤(a+c2b2.其中,正確結(jié)論的個(gè)數(shù)是(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,C為線段BE上的一點(diǎn),分別以BC和CE為邊在BE的同側(cè)作正方形ABCD和正方形CEFG,M、N分別是線段AF和GD的中點(diǎn),連接MN

(1)線段MN和GD的數(shù)量關(guān)系是_____,位置關(guān)系是_____;

(2)將圖①中的正方形CEFG繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,其他條件不變,如圖②,(1)的結(jié)論是否成立?說明理由;

(3)已知BC=7,CE=3,將圖①中的正方形CEFG繞點(diǎn)C旋轉(zhuǎn)一周,其他條件不變,直接寫出MN的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解八年級(jí)學(xué)生參加社會(huì)實(shí)踐活動(dòng)情況,隨機(jī)調(diào)查了本校部分八年級(jí)學(xué)生在第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)圖中提供的信息,回答下列問題:

(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中的的值為 ;

(2)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

(3)若該校八年級(jí)學(xué)生有人,估計(jì)參加社會(huì)實(shí)踐活動(dòng)時(shí)間大于天的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一種指甲剪.該指甲剪利用杠桿原理操作,使用者只需施力按壓柄的末端,便可輕易透過鋒利的前端刀片剪斷指甲,它被按壓后示意圖如圖2所示,上下臂杠桿軸承,未使用指甲剪時(shí),點(diǎn)上,且長(zhǎng),則的長(zhǎng)為________;使用指甲剪時(shí),下壓點(diǎn),當(dāng)時(shí),兩刀片咬合,繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)到的位置,則的交點(diǎn)從開始到結(jié)束時(shí)移動(dòng)的距離_______

查看答案和解析>>

同步練習(xí)冊(cè)答案