【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,現(xiàn)將△ABC平移,使點(diǎn)A變換為點(diǎn)A',點(diǎn)B'、C'分別是B、C的對(duì)應(yīng)點(diǎn).

1)請(qǐng)畫(huà)出平移后的△A'B'C';

2)若連接AA'CC',則這兩條線(xiàn)段之間的關(guān)系是    

3)作直線(xiàn)MN,將△ABC分成兩個(gè)面積相等的三角形.

【答案】1)作圖見(jiàn)解析;(2)相等且平行;(3)答案見(jiàn)解析.

【解析】

1)先將點(diǎn)向下平移1個(gè)單位長(zhǎng)度,再向左平移3個(gè)單位長(zhǎng)度得到點(diǎn),然后順次連接即可得;

2)根據(jù)平移的性質(zhì)即可得;

3)利用網(wǎng)格的特點(diǎn),構(gòu)造平行四邊形ABCD,則對(duì)角線(xiàn)BD所在的直線(xiàn)即為所求的直線(xiàn)MN

1)先將點(diǎn)向下平移1個(gè)單位長(zhǎng)度,再向左平移3個(gè)單位長(zhǎng)度得到點(diǎn),然后順次連接即可得到,作圖結(jié)果如圖所示:

2)由平移的性質(zhì)可知,線(xiàn)段,這兩條線(xiàn)段之間的關(guān)系是相等且平行

故答案為:相等且平行;

3)利用網(wǎng)格的特點(diǎn),構(gòu)造平行四邊形ABCD,則對(duì)角線(xiàn)BD所在的直線(xiàn)即為所求的直線(xiàn)MN,作圖結(jié)果如圖所示:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文物古跡遺址每周都吸引大量中外游客前來(lái)參觀,如果游客過(guò)多,對(duì)文物古跡會(huì)產(chǎn)生不良影響,但同時(shí)考慮到文物的修繕和保存費(fèi)用的問(wèn)題,還要保證有一定的門(mén)票收入,因此遺址的管理部門(mén)采取了升、降門(mén)票價(jià)格的方法來(lái)控制參觀人數(shù).在實(shí)施過(guò)程中發(fā)現(xiàn):每周參觀人數(shù)y(人)與票價(jià)x(元)之間怡好構(gòu)成一次函數(shù)關(guān)系.

(Ⅰ)根據(jù)題意完成下列表格

票價(jià)x(元)

10

15

x

18

參觀人數(shù)y(人)

7000

4500

   

   

(Ⅱ)在這樣的情況下,如果要確保每周有40000元的門(mén)票收入,那么每周應(yīng)限定參觀人數(shù)是多少?門(mén)票價(jià)格應(yīng)定位多少元?

(Ⅲ)門(mén)票價(jià)格應(yīng)該是多少元時(shí),門(mén)票收入最大?這樣每周應(yīng)有多少人參觀?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線(xiàn)AC上的一個(gè)動(dòng)點(diǎn)過(guò)點(diǎn)P垂直于AC的直線(xiàn)交菱形ABCD的邊于M、N兩點(diǎn)設(shè)AC=2BD=1,AP=x,CMN的面積為y,則y關(guān)于x的函數(shù)圖象大致形狀是( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是正方形ABCD的對(duì)角線(xiàn),BC=2,邊BC在其所在的直線(xiàn)上平移,將通過(guò)平移得到的線(xiàn)段記為PQ,連接PA、QD,并過(guò)點(diǎn)QQO⊥BD,垂足為O,連接OA、OP.

(1)請(qǐng)直接寫(xiě)出線(xiàn)段BC在平移過(guò)程中,四邊形APQD是什么四邊形?

(2)請(qǐng)判斷OA、OP之間的數(shù)量關(guān)系和位置關(guān)系,并加以證明;

(3)在平移變換過(guò)程中,設(shè)y=SOPB,BP=x(0≤x≤2),求yx之間的函數(shù)關(guān)系式,并求出y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知ABAC,D為∠BAC的角平分線(xiàn)上面一點(diǎn),連接BD、CD;如圖2,已知ABACD、E為∠BAC的角平分線(xiàn)上面兩點(diǎn),連接BD、CDBE、CE;如圖3,已知ABAC,D、EF為∠BAC的角平分線(xiàn)上面三點(diǎn),連接CDBE、CEBF、CF,依次規(guī)律,第200個(gè)圖形中有全等三角形的對(duì)數(shù)是(

A.200對(duì)B.399對(duì)C.603對(duì)D.20100對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC內(nèi)接于以AB為直徑的⊙O,過(guò)點(diǎn)C作⊙O的切線(xiàn)交BA的延長(zhǎng)線(xiàn)于點(diǎn)D,且DAAB=12.

(1)求∠CDB的度數(shù);

(2)在切線(xiàn)DC上截取CE=CD,連接EB,判斷直線(xiàn)EB與⊙O的位置關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠A=50°,點(diǎn)D,E分別是邊AC,AB上的點(diǎn)(不與A,B,C重合),點(diǎn)P是平面內(nèi)一動(dòng)點(diǎn)(P與D,E不在同一直線(xiàn)上),設(shè)∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若點(diǎn)P在邊BC上運(yùn)動(dòng)(不與點(diǎn)B和點(diǎn)C重合),如圖(1)所示,則∠1+∠2=________

(用α的代數(shù)式表示).

(2)若點(diǎn)PABC的外部,如圖(2)所示,則∠α,∠1,∠2之間有何關(guān)系?寫(xiě)出你的結(jié)論,并說(shuō)明理由.

(3)當(dāng)點(diǎn)P在邊CB的延長(zhǎng)線(xiàn)上運(yùn)動(dòng)時(shí),試畫(huà)出相應(yīng)圖形,標(biāo)注有關(guān)字母與數(shù)字,并寫(xiě)出對(duì)應(yīng)的∠α,∠1,∠2之間的關(guān)系式.(不需要證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,將兩個(gè)完全相同的三角形紙片 ABC DEC重合放置,其中∠C=90°,∠B=∠E=30°.

1)如圖2,固定△ABC,使△DEC 繞點(diǎn) C 旋轉(zhuǎn),當(dāng)點(diǎn) D 恰好落 AB 邊上時(shí),

①填空:線(xiàn)段 DE AC 的位置關(guān)系是 ;

②設(shè)△BDC 的面積為 S1,△AEC 的面積為 S2,求證:S1=S2

2)當(dāng)△DEC 繞點(diǎn) C 旋轉(zhuǎn)到如圖 3 所示的位置時(shí),小明猜想(1 S1 S2 的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AECBCCE 邊上的高,請(qǐng)你證明小明的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象與軸交于點(diǎn),與正比例函數(shù)的圖象相交于點(diǎn),且.

1)分別求出這兩個(gè)函數(shù)的解析式;

2)求的面積;

3)點(diǎn)軸上,且是等腰三角形,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案