【題目】解下列分式方程:

(1);

(2).

【答案】(1)x=;(2)x=-1.

【解析】

(1)先確定最簡公分母為,將分式方程兩邊同時乘以最簡公分母約去分母可得:,根據(jù)解一元一次方程的解法進行求解,然后將一元一次方程的解代入最簡公分母中進行驗根,

(2) 先確定最簡公分母為(13x)(1+3x,將分式方程兩邊同時乘以最簡公分母約去分母可得:(13x2﹣(1+3x2=12,根據(jù)解一元一次方程的解法進行求解,然后將一元一次方程的解代入最簡公分母中進行驗根,

:(1)方程兩邊都乘以2x+3),:4x+2x+3=7,

解得:x=,

x=,2x+3=≠0,

所以分式方程的解為x=,

2)方程兩邊都乘以(13x)(1+3x),:(13x2﹣(1+3x2=12,

解得:x=1,

x=1,(13x)(1+3x=8≠0,

所以分式方程的解為x=1.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A(-3,0),B軸上,直線y=-2x+a經(jīng)過點B軸交于點(0, 6),直線AD與直線y=-2x+a相交于點D(-1,n).

(1)求直線AD的表達式;

(2)M是直線y=-2x+a上的一點(不與點B重合),且點M的橫坐標為m,求△ABM的面積Sm之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=nAD,點E,F(xiàn)分別在邊AB,AD上且不與頂點A,B,D重合,∠AEF=∠BCE,圈O過A,E,F(xiàn)三點.
(1)求證:圈O與CE相切與點E;
(2)如圖1,若AF=2FD且∠AEF=30°,求n的值;
(3)如圖2.若EF=EC且圈O與邊CD相切,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李叔叔在“中央山水”買了一套經(jīng)濟適用房,他準備將地面鋪上地磚,這套住宅的建筑平面(由四個長方形組成)如圖所示(圖中長度單位:米),請解答下問題:

1)用式子表示這所住宅的總面積;

2)若鋪1平方米地磚平均費用120元,求當x=6時,這套住宅鋪地磚總費用為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AE平分∠BADBC于點E.

(1)作CF平分∠BCDAD于點F(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);

(2)在(1)的條件下,求證:△ABE≌△CDF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OM是AOC的平分線,ON是BOC的平分線.

(1)如圖1,當AOB是直角,BOC=60°時,MON的度數(shù)是多少?

(2)如圖2,當AOB=αBOC=60°時,猜想MON與α的數(shù)量關(guān)系;

(3)如圖3,當AOB=α,BOC=β時,猜想MON與α、β有數(shù)量關(guān)系嗎?如果有,指出結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,

求證:∠A+C=180°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,每個小立方體的棱長為1,圖1中共有1個立方體,其中1個看得見,0個看不見;圖2中共有8個小立方體,其中7個看得見,1個看不見;圖3中共有27個小立方體,其中19個看得見,8個看不見;……;則第10個圖形中,其中看得見的小立方體個數(shù)是( 。

A. 270 B. 271 C. 272 D. 273

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某快遞公司有甲、乙、丙三個機器人分配快件,甲單獨完成需要x小時,乙單獨完成需要y小時,丙單獨完成需要z小時.

(1)求甲單獨完成的時間是乙丙合作完成時間的幾倍?

(2)若甲單獨完成的時間是乙丙合作完成時間的a倍,乙單獨完成的時間是甲丙合作完成時間的b倍,丙單獨完成的時間是甲乙合作完成時間的c倍,求的值.

查看答案和解析>>

同步練習冊答案