【題目】已知:如圖,斜坡AP的坡度為1:2.4,坡長AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測得該塔的塔頂B的仰角為45°,在坡頂A處測得該塔的塔頂B的仰角為76°.求:
(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結果精確到1米).(參考數據:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
【答案】
(1)解:過點A作AH⊥PQ,垂足為點H.
∵斜坡AP的坡度為1:2.4,∴ = ,
設AH=5km,則PH=12km,
由勾股定理,得AP=13km.
∴13k=26m. 解得k=2.
∴AH=10m.
答:坡頂A到地面PQ的距離為10m.
(2)解:延長BC交PQ于點D.
∵BC⊥AC,AC∥PQ,
∴BD⊥PQ.
∴四邊形AHDC是矩形,CD=AH=10,AC=DH.
∵∠BPD=45°,
∴PD=BD.
設BC=x,則x+10=24+DH.∴AC=DH=x﹣14.
在Rt△ABC中,tan76°= ,即 ≈4.0,
解得x= ,即x≈19,
答:古塔BC的高度約為19米.
【解析】(1)首先過點A作AH⊥PQ,垂足為H,接下來,依據斜坡AP的坡度為1:2.4,可求得AH,PH,AP的關系,從而可求得AP的長;
(2)設BC=x,首先利用矩形性質求出x+10=24+DH,再利用銳角三角函數的定義列方程求解即可
科目:初中數學 來源: 題型:
【題目】如圖,點A的坐標為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰Rt△ABC,使∠BAC=90°,設點B的橫坐標為x,設點C的縱坐標為y,能表示y與x的函數關系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一漁船由西往東航行,在A點測得海島C位于北偏東60°的方向,前進30海里到達B點,此時,測得海島C位于北偏東30°的方向,求海島C到航線AB的距離CD的長(結果保留根號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB<BC,E為CD邊的中點,將△ADE繞點E順時針旋轉180°,點D的對應點為C,點A的對應點為F,過點E作ME⊥AF交BC于點M,連接AM、BD交于點N,現有下列結論:
①AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點N為△ABM的外心.其中正確的個數為( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,兩根旗桿間相距12m,某人從點B沿BA走向點A,一段時間后他到達點M,此時他仰望旗桿的頂點C和D,兩次視線的夾角為90°,且CM=DM,已知旗桿AC的高為3m,該人的運動速度為1m/s,則這個人運動到點M所用時間是_______________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A,B是l1上的兩點,C,D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com