【題目】已知:如圖,在△ABC中,,∠ABC=90°,ECB延長(zhǎng)線上一點(diǎn),點(diǎn)FAB上,且

求證:

若∠CAE=60°,求∠ACF的度數(shù).

【答案】1)證明見(jiàn)詳解;

230°

【解析】

1)利用HL定理得出RtABERtCBF即可得出答案;
2)利用三角形內(nèi)角和定理以及等腰三角形的性質(zhì)得出即可.

解:(1)在RtABERtCBF中,

,

RtABERtCBFHL),
BE=BF;

2)∵∠ABC=90°AB=CB,∴∠BAC=BCA=45°
又∵∠CAE=60°,∴∠BAE=15°
由(1RtABERtCBF,
∴∠BAE=BCF=15°,
∴∠ACF=BCA-BCF=45°-15°=30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PAPB是⊙O的切線,AB是切點(diǎn),點(diǎn)C是劣弧AB上的一點(diǎn),若∠P=40°,則∠ACB等于(  )

A. 80° B. 110° C. 120° D. 140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游泳館推出了兩種收費(fèi)方式.

方式一:顧客先購(gòu)買會(huì)員卡,每張會(huì)員卡200元,僅限本人一年內(nèi)使用,憑卡游泳,每次游泳再付費(fèi)30元.

方式二:顧客不購(gòu)買會(huì)員卡,每次游泳付費(fèi)40元.

設(shè)小亮在一年內(nèi)來(lái)此游泳館的次數(shù)為x次,選擇方式一的總費(fèi)用為y1(元),選擇方式二的總費(fèi)用為y2(元).

1)請(qǐng)分別寫出y1y2x之間的函數(shù)表達(dá)式.

2)若小亮一年內(nèi)來(lái)此游泳館的次數(shù)為15次,選擇哪種方式比較劃算?

3)若小亮計(jì)劃拿出1400元用于在此游泳館游泳,采用哪種付費(fèi)方式更劃算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點(diǎn)坐標(biāo)分別為A(-5,1),B(-1,1),C(-43).

1)若A1B1C1ABC關(guān)于y軸對(duì)稱,點(diǎn)AB,C的對(duì)應(yīng)點(diǎn)分別為A1,B1,C1,請(qǐng)畫出A1B1C1并寫出A1,B1,C1的坐標(biāo);

2)若點(diǎn)P為平面內(nèi)不與C重合的一點(diǎn),PABABC全等,請(qǐng)寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥ABAE=CE.求證:

1△AEF≌△CEB;

2AF=2CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BP平分∠ABCDBP上一點(diǎn),E,F分別在BA,BC上,且滿足DEDF,若∠BED140°,則∠BFD的度數(shù)是( 。

A. 40°B. 50°C. 60°D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABDC中,∠D=B=90°,點(diǎn)OBD的中點(diǎn),且AO平分∠BAC.

(1)求證:CO平分∠ACD;

(2)求證:OAOC;

(3)求證:AB+CD=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,張老師舉了下面的例題:

1 等腰三角形中,,求的度數(shù).(答案:

2 等腰三角形中,,求的度數(shù).(答案:

張老師啟發(fā)同學(xué)們進(jìn)行變式,小敏編了如下一題:

變式 等腰三角形中,,求的度數(shù).

(1)請(qǐng)你解答以上的變式題.

(2)解(1)后,小敏發(fā)現(xiàn),的度數(shù)不同,得到的度數(shù)的個(gè)數(shù)也可能不同.如果在等腰三角形中,設(shè),當(dāng)有三個(gè)不同的度數(shù)時(shí),請(qǐng)你探索的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一個(gè)有45°角的三角板的直角頂點(diǎn)放在一張寬為3cm的紙帶邊沿上,另一個(gè)頂

點(diǎn)在紙帶的另一邊沿上,測(cè)得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),

則三角板的最大邊的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案