【題目】如圖,長(zhǎng)方形ABCD的長(zhǎng)為6,寬為4,將長(zhǎng)方形先向上平移2個(gè)單位,再向右平移2個(gè)單位得到長(zhǎng)方形,則陰影部分面積是( )
A.12B.10C.8D.6
【答案】C
【解析】
利用平移的性質(zhì)得到AB∥A′B′,BC∥B′C′,則A′B′⊥BC,延長(zhǎng)A′B′交BC于F,AD交A′B′于E,CD交B′C′于G,根據(jù)平移的性質(zhì)得到FB′=2,AE=2,易得四邊形ABFE、四邊形BEDG都為矩形,然后計(jì)算出DE和B′E后可得到陰影部分面積.
解:∵長(zhǎng)方形ABCD先向上平移2個(gè)單位,再向右平移2個(gè)單位得到長(zhǎng)方形A′B′C′D′,
∴AB∥A′B′,BC∥B′C′,
∴A′B′⊥BC,
延長(zhǎng)A′B′交BC于F,AD交A′B′于E,CD交B′C′于G,
∴FB′=2,AE=2,
易得四邊形ABFE、四邊形BEDG都為矩形,
∴DE=AD-AE=6-2=4,B′E=EF-B′F=AB-B′F=4-2=2,
∴陰影部分面積=4×2=8.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程。
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB、AC的長(zhǎng)是方程的兩個(gè)實(shí)數(shù)根,第三邊BC的長(zhǎng)為5。當(dāng)△ABC是等腰三角形時(shí),求k的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為直徑,點(diǎn)D在⊙O上,過點(diǎn)D作⊙O切線與AC的延長(zhǎng)線交于點(diǎn)E,ED∥BC,連接AD交BC于點(diǎn)F.
(1)求證:∠BAD=∠DAE;
(2)若AB=6,AD=5,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)形狀、大小完全相同的含有、的直角三角板如圖①放置,、與直線重合,且三角板、三角板均可繞點(diǎn)逆時(shí)針旋轉(zhuǎn).
圖① 圖②
(1)直接寫出的度數(shù)是______.
(2)如圖②,在圖①基礎(chǔ)上,若三角板的邊從處開始繞點(diǎn)逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為4.5度/秒,同時(shí)三角板的邊從處開始繞點(diǎn)逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為0.5度/秒,(當(dāng)轉(zhuǎn)到與重合時(shí),兩三角板都停止轉(zhuǎn)動(dòng)),在旋轉(zhuǎn)過程中,當(dāng)與重合時(shí),求旋轉(zhuǎn)的時(shí)間是多少?
(3)在(2)的條件下,、、三條射線中,當(dāng)其中一條射線平分另兩條射線的夾角時(shí),請(qǐng)求出旋轉(zhuǎn)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程組解應(yīng)用題
5月份,甲、乙兩個(gè)工廠用水量共為200噸.進(jìn)入夏季用水高峰期后,兩工廠積極響應(yīng)國(guó)家號(hào)召,采取節(jié)水措施.6月份,甲工廠用水量比5月份減少了15%,乙工廠用水量比5月份減少了10%,兩個(gè)工廠6月份用水量共為174噸,求兩個(gè)工廠5月份的用水量各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB∥CD.
(1)如圖1,EOF是直線AB、CD間的一條折線,猜想∠1、∠2、∠3的數(shù)量關(guān)系,并說明理由;
(2)如圖2,若點(diǎn)C在點(diǎn)D的右側(cè),BE平分∠ABC,DE平分∠ADC,BE、DF所在直線交于點(diǎn)E,若∠ADC=α,∠ABC=β,求∠BED的度數(shù)(用含有α、β的式子表示);
(3)在(2)的前提下將線段BC沿DC方向平移,使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,若∠ADC=α,∠ABC=β,求∠BED的度數(shù)(用含有α、β的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求這個(gè)二次函數(shù)的解析式;
(2)點(diǎn)P是直線AC上方的拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)P,使△ACP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)點(diǎn)Q是直線AC上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)Q作QE垂直于軸,垂足為E.是否存在點(diǎn)Q,使以點(diǎn)B、Q、E為頂點(diǎn)的三角形與△AOC相似?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】ABCD中,點(diǎn)E是AB的中點(diǎn),在直線AD上截取AF=2FD,EF交AC于G,則=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與理解:
如圖,一只甲蟲在5×5的方格(每個(gè)方格邊長(zhǎng)均為1)上沿著網(wǎng)格線爬行.若我們規(guī)定:在如圖網(wǎng)格中,向上(或向右)爬行記為“+”,向下(或向左)爬行記為“﹣”,并且第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.
例如:從A到B記為:A→B(+1,+4),從D到C記為:D→C(﹣1,+2).
思考與應(yīng)用:
(1)圖中B→C( , )C→D( , )
(2)若甲蟲從A到P的行走路線依次為:(+3,+2)→(+1,+3)→(+1,﹣2),請(qǐng)?jiān)趫D中標(biāo)出P的位置.
(3)若甲蟲的行走路線為A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),請(qǐng)計(jì)算該甲蟲走過的總路程S.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com