(2006•泉州)如圖,小王在操場(chǎng)上放風(fēng)箏,已知風(fēng)箏線AB長(zhǎng)100米,風(fēng)箏線與水平線的夾角α=36°,小王拿風(fēng)箏線的手離地面的高度AD為1.5米,求風(fēng)箏離地面的高度BE(精確到0.1米).

【答案】分析:本題是一個(gè)直角梯形的問(wèn)題,可以通過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,把求AB的問(wèn)題轉(zhuǎn)化求AD的長(zhǎng),從而可以在△ACB中利用三角函數(shù).
解答:解:在Rt△ABC中,∠BAC=∠α=36°,AB=100米.
∵sinα=(4分).
∴BC=AB•sinα=100×sin36°≈100×0.5878=58.78(米).(6分)
又∵CE=AD=1.5米.
∴BE=BC+CE=58.78+1.5=60.28≈60.3(米).
答:風(fēng)箏離地面的高度BE約為60.3米.(8分)
點(diǎn)評(píng):解直角梯形可以通過(guò)作高線轉(zhuǎn)化為解直角三角形和矩形的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2006•泉州)如圖,在直角坐標(biāo)系中,O為原點(diǎn),A(4,12)為雙曲線(x>0)上的一點(diǎn).
(1)求k的值;
(2)過(guò)雙曲線上的點(diǎn)P作PB⊥x軸于B,連接OP,若Rt△OPB兩直角邊的比值為,試求點(diǎn)P的坐標(biāo);
(3)分別過(guò)雙曲線上的兩點(diǎn)P1、P2,作P1B1⊥x軸于B1,P2B2⊥x軸于B2,連接OP1、OP2.設(shè)Rt△OP1B1、Rt△OP2B2的周長(zhǎng)分別為l1、l2,內(nèi)切圓的半徑分別為r1、r2,若,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年福建省泉州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•泉州)如圖,在直角坐標(biāo)系中,O為原點(diǎn),A(4,12)為雙曲線(x>0)上的一點(diǎn).
(1)求k的值;
(2)過(guò)雙曲線上的點(diǎn)P作PB⊥x軸于B,連接OP,若Rt△OPB兩直角邊的比值為,試求點(diǎn)P的坐標(biāo);
(3)分別過(guò)雙曲線上的兩點(diǎn)P1、P2,作P1B1⊥x軸于B1,P2B2⊥x軸于B2,連接OP1、OP2.設(shè)Rt△OP1B1、Rt△OP2B2的周長(zhǎng)分別為l1、l2,內(nèi)切圓的半徑分別為r1、r2,若,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識(shí)》(03)(解析版) 題型:選擇題

(2006•泉州)如圖,在Rt△ABC中,∠C=90°,AC=2,BC的長(zhǎng)為常數(shù),點(diǎn)P從起點(diǎn)C出發(fā),沿CB向終點(diǎn)B運(yùn)動(dòng),設(shè)點(diǎn)P所走過(guò)路程CP的長(zhǎng)為x,△APB的面積為y,則下列圖象能大致反映y與x之間的函數(shù)關(guān)系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年福建省泉州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•泉州)如圖,物體的正視圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年福建省泉州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2006•泉州)如圖,△ABC為⊙O的內(nèi)接三角形,AB是直徑,∠A=20°,則∠B=    度.

查看答案和解析>>

同步練習(xí)冊(cè)答案