【題目】如圖,△ABC中,AB=BC,∠ABC=120°,點(diǎn)E是AC上一點(diǎn),連接BE,且∠BEC=50°,D為點(diǎn)B關(guān)于直線AC的對(duì)稱點(diǎn),連接CD,將線段EB繞點(diǎn)E順時(shí)針旋轉(zhuǎn)40°得到線段EF,連接DF.
(1)請(qǐng)你在下圖中補(bǔ)全圖形;
(2)請(qǐng)寫(xiě)出∠EFD的大小,并說(shuō)明理由;
(3)連接CF,求證:DF=CF.
【答案】(1)圖見(jiàn)解析;(2)60°;理由見(jiàn)解析;(3)見(jiàn)解析.
【解析】
(1)根據(jù)題意補(bǔ)全圖形即可;
(2)連接ED,根據(jù)對(duì)稱性質(zhì)可得:ED=EB,∠BEC=∠DEC=50°,再根據(jù)旋轉(zhuǎn)性質(zhì)可得:BE=EF,∠BEF=40°,從而得出EF=ED,∠FED=∠BEC+∠DEC-∠BEF=60°,即可判定△EFD為等邊三角形,從而求出∠EFD的大;
(3)連接BF并延長(zhǎng)交DC于G,利用等邊對(duì)等角求出∠BCA,根據(jù)對(duì)稱的性質(zhì)可得:CB=CD,∠BCG=2∠BAC=2∠DCA=60°,再求出∠CBG的度數(shù),從而可判定BG⊥CD,再根據(jù)30°所對(duì)的直角邊是斜邊的一半,即可證出G是CD的中點(diǎn),從而得到BG垂直平分CD,根據(jù)垂直平分線的性質(zhì)即可證DF=CF.
補(bǔ)全圖形如下所示:
(2)連接ED,
∵D為點(diǎn)B關(guān)于直線AC的對(duì)稱點(diǎn)
∴ED=EB,∠BEC=∠DEC=50°
∵EB繞點(diǎn)E順時(shí)針旋轉(zhuǎn)40°得到線段EF
∴BE=EF,∠BEF=40°
∴EF=ED,∠FED=∠BEC+∠DEC-∠BEF=60°
∴△EFD為等邊三角形
∴∠EFD=60°
(3)連接BF并延長(zhǎng)交DC于G
∵AB=AC,∠ABC=120°
∴∠A=∠BCA=(180°-∠ABC)=30°
∵D為點(diǎn)B關(guān)于直線AC的對(duì)稱點(diǎn)
∴CB=CD,∠BCG=2∠BAC=2∠DCA=60°
∵BE=EF,∠BEF=40°
∴∠EBF=∠EFB=(180°-∠BEF)=70°
∠EBC=180°-∠BEC-∠BCE=100°
∴∠CBG=∠EBC-∠EBF=30°
∴∠BGC=180°-∠CBG-∠BCG=90°
∴BG⊥CD,CG=BC=CD
∴G為CD的中點(diǎn)
∴BG垂直平分CD
∴DF=CF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,∠B=∠C=90 ,M是BC的中點(diǎn),DM平分∠ADC.
(1)若連接AM,則AM是否平分∠BAD?請(qǐng)你證明你的結(jié)論;
(2)線段DM與AM有怎樣的位置關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=∠C,AB=8,BC=6,點(diǎn)D為AB的中點(diǎn),點(diǎn)P在線段BC上以每秒2個(gè)單位的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上以每秒a個(gè)單位的速度由點(diǎn)C向點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒)(0≤t≤3).
(1)用含t的代數(shù)式表示線段PC的長(zhǎng);
(2)若點(diǎn)P、Q的運(yùn)動(dòng)速度相等,t=1時(shí),△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由.
(3)若點(diǎn)P、Q的運(yùn)動(dòng)速度不相等,△BPD與△CQP全等時(shí),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ABC=30°,BD平分∠ABC交AC于點(diǎn)D,BC的垂直平分線EF交BC于點(diǎn)E,交BD于點(diǎn)F,若BF=6,則AC的長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,AD為中線,點(diǎn)P是AD上一點(diǎn),點(diǎn)Q是AC上一點(diǎn),且∠BPQ+∠BAQ=180°.
(1)若∠ABP=α,求∠PQC的度數(shù)(用含α的式子表示);
(2)求證:BP=PQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)想測(cè)量位于池塘兩端的A、B兩點(diǎn)的距離.他沿著與直線AB平行的道路EF行走,當(dāng)行走到點(diǎn)C處,測(cè)得∠ACF=45°,再向前行走一段距離時(shí)到點(diǎn)D處,側(cè)得∠BDF=65°.若直線AB與EF之間的距離為60米.
(1)設(shè)池塘兩端的距離AB=x米,試用含x的代數(shù)式表示CD的長(zhǎng);
(2)當(dāng)CD=100米時(shí),求A、B兩點(diǎn)的距離(計(jì)算結(jié)果精確到個(gè)位).(參考數(shù)據(jù):sin45°≈0.71,cos65°≈0.42,tan65°≈2.14.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,矩形ABCD中,AB=8,AD=6;點(diǎn)E是對(duì)角線BD上一動(dòng)點(diǎn),連接CE,作EF⊥CE交AB邊于點(diǎn)F,以CE和EF為鄰邊作矩形CEFG,作其對(duì)角線相交于點(diǎn)H.
(1)①如圖2,當(dāng)點(diǎn)F與點(diǎn)B重合時(shí),CE= ,CG= ;
②如圖3,當(dāng)點(diǎn)E是BD中點(diǎn)時(shí),CE= ,CG= ;
(2)在圖1,連接BG,當(dāng)矩形CEFG隨著點(diǎn)E的運(yùn)動(dòng)而變化時(shí),猜想△EBG的形狀?并加以證明;
(3)在圖1,的值是否會(huì)發(fā)生改變?若不變,求出它的值;若改變,說(shuō)明理由;
(4)在圖1,設(shè)DE的長(zhǎng)為x,矩形CEFG的面積為S,試求S關(guān)于x的函數(shù)關(guān)系式,并直接寫(xiě)出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,以BC為直徑的⊙O交AC于點(diǎn)E,過(guò)點(diǎn)E作AB的垂線交AB于點(diǎn)F,交CB的延長(zhǎng)線于點(diǎn)G,且∠ABG=2∠C.
(1)求證:EG是⊙O的切線;
(2)若tanC=,AC=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D為BC邊上一點(diǎn),∠1=∠2=∠3,AC=AE.
求證:△ABC≌△ADE;(填空)
證明:∵∠2+∠E+∠AFE=180° ( )
∠3+∠C+∠CFD=180°(同理)
又∵∠2=∠3( )
∠AFE=∠CFD( )
∴∠E=_________.
∵∠1=∠2(已知)
∴∠1+∠CAD=∠2+∠_______.
即∠BAC=∠DAE
在△ABC和△ADE中
∴△ABC≌△ADE( ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com