【題目】已知在△ABC中,∠B=90o,以AB上的一點O為圓心,以OA為半徑的圓交AC于點D,交AB于點E

1)求證:AC·AD=AB·AE

2)如果BD⊙O的切線,D是切點,EOB的中點,當(dāng)BC=2時,求AC的長.

【答案】1)證明見解析;(2AC=4.

【解析】

1)連接DE,由題意可得∠ADE=90°,∠ABC=90°,又∠A是公共角,從而可得△ADE∽△ABC,由相似比即可得;

2)連接OB,由BD是切線,得OD⊥BD,有EOB中點,則可得OE=BE=OD,從而可得∠OBD=∠BAC=30°,所以AC=2BC=4

1)連接DE,∵AE是直徑,∴∠ADE=90o,∴∠ADE=∠ABC,在Rt△ADERt△ABC中,∠A是公共角,∴△ADE∽△ABC,即AC·AD=AB·AE

2)連接OD∵BD是圓O的切線,則OD⊥BD,在Rt△OBD中,OE=BE=OD

∴OB=2OD,∴∠OBD=30°,同理∠BAC=30°,在Rt△ABC中,AC=2BC=2×2=4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象與直線ymx交于點C,直線ly4分別交兩函數(shù)圖象于點A1,4)和點B,過點BBDl交反比例函數(shù)圖象于點 D

1)求反比例函數(shù)的解析式;

2)當(dāng)BD2AB時,求點B的坐標(biāo);

3)在(2)的條件下,直接寫出不等式mx的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,.將繞點逆時針旋轉(zhuǎn)得到,則圖中陰影部分的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1、圖2分別是兩張形狀和大小完全相同的方格紙,方格紙中每個小正方形的邊長均為1,線段的兩個端點均在小正方形的頂點上.

1)在圖1中畫出以為直角邊的直角,點在小正方形的頂點上,且;

2)在圖2中畫出以為腰的鈍角等腰,點在小正方形的頂點上,且的面積為10.并直接寫出線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 x軸交于點A1,0),頂點坐標(biāo)(1,n),與y軸的交點在(0,3),(04)之間(包含端點),則下列結(jié)論:abc0;3a+b0③﹣a1;a+bam2+bmm為任意實數(shù));一元二次方程 有兩個不相等的實數(shù)根,其中正確的有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A、B分別在反比例函數(shù)x0),k0,x0)的圖象上.點B的橫坐標(biāo)為4,且點B在直線yx5上.

1)求k的值;(2)若OAOB,求tanABO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形的頂點與坐標(biāo)原點重合,頂點分別在坐標(biāo)軸的正半軸上, ,在直線,直線與折線有公共點.

1)點的坐標(biāo)是 ;

2)若直線經(jīng)過點,求直線的解析式;

3)對于一次函數(shù),當(dāng)的增大而減小時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在二次函數(shù)的學(xué)習(xí)中,教材有如下內(nèi)容:

1 函數(shù)圖象求一元二次方程的近似解(精確到0.1).

解:設(shè)有二次函數(shù),列表并作出它的圖象(圖1).

0

1

2

3

4

5

觀察拋物線和軸交點的位置,估計出交點的橫坐標(biāo)分別約為4.8,所以得出方程精確到0.1的近似解為,,利用二次函數(shù)的圖象求出一元二次方程的解的方法稱為圖象法,這種方法常用來求方程的近似解.

小聰和小明通過例題的學(xué)習(xí),體會到利用函數(shù)圖象可以求出方程的近似解.于是他們嘗試?yán)脠D象法探宄方程的近似解,做法如下:

小聰?shù)淖龇ǎ毫詈瘮?shù),列表并畫出函數(shù)的圖象,借助圖象得到方程的近似解.

小明的做法:因為,所以先將方程的兩邊同時除以,變形得到方程,再令函數(shù),列表并畫出這兩個函數(shù)的圖象,借助圖象得到方程的近似解.

請你選擇小聰或小明的做法,求出方程的近似解(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售某種型號防護面罩,進貨價為40/個.經(jīng)市場銷售發(fā)現(xiàn):售價為50/個時,每周可以售出100個,若每漲價1元,就會少售出5個.供貨廠家規(guī)定市場售價不得低于50/個,且商場每周銷售數(shù)量不得少于80個.

1)確定商場每周銷售這種型號防護面罩所得的利潤w(元)與售價x(元/個)之間的函數(shù)關(guān)系式.

2)當(dāng)售價x(元/個)定為多少時,商場每周銷售這種防護面罩所得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案