【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,連結(jié)AE、DE、DC,且AE=CD.
(1)求證:△ABE≌△CBD;
(2)若∠CAE=30°,求∠BDC的度數(shù).
【答案】(1)證明見解析;(2)∠BDC=75°.
【解析】
(1)利用HL證明三角形全等即可;
(2)利用等腰直角三角形的性質(zhì)求出∠CAB的度數(shù),再由三角形外角的性質(zhì)得到∠BEA度數(shù),由全等三角形對應(yīng)角相等即可得到∠BDC=∠BEA.
(1)證明:∵∠ABC=90°,D為AB延長線上一點,
∴∠ABE=∠CBD=90°,
在Rt△ABE和Rt△CBD中,
∴Rt△ABE≌Rt△CBD;
(2)∵AB=CB,∠ABC=90°,
∴∠CAB=45°,
又∵∠CAE=30°,
∴∠BEA=75°,
∵△ABE≌△CBD,
∴∠BDC=∠BEA=75°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?
(2)若學(xué)校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應(yīng)安排甲隊工作多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AC=BC,∠C=120°,點D為AB邊的中點,∠EDF=60°,DE、DF分別交AC、BC與E、F點。
(1)如圖,若EF∥AB,求證DE=DF
(2)如圖,若EF與AB不平行,則問題(1)的結(jié)論是否成立?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點A、B在雙曲線y=( x>0)上,BC與x軸交于點D.若點A的坐標為(1,2),則點B的坐標為( 。
A. (3,) B. (4,) C. (,) D. (5,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個,錯誤的選法是( )
A.∠ADB=∠ADCB.∠B=∠CC.AB=ACD.DB=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(2,3),B(-3,n)兩點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若P是y軸上一點,且滿足△PAB的面積是5,求OP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組在“用頻率估計概率”的試驗中,統(tǒng)計了某種結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結(jié)果的試驗最有可能的是( 。
A. 在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”
B. 從一副撲克牌中任意抽取一張,這張牌是“紅色的”
C. 擲一枚質(zhì)地均勻的硬幣,落地時結(jié)果是“正面朝上”
D. 擲一個質(zhì)地均勻的正六面體骰子,落地時面朝上的點數(shù)是6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,點O是AC上的一動點,過點O作直線MN∥AB,設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角∠ACG的平分線于點F連接AE、AF.
(1)求證:∠ECF=90°;
(2)當點O運動到何處時,四邊形AECF是矩形?請說明理由;
(3)在(2)的條件下,△ABC應(yīng)該滿足條件:______________,就能使矩形AECF變?yōu)檎叫巍?/span>(直接添加條件,無需證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com