【題目】如圖①,四邊形ABCD是正方形,點G是BC上任意一點,DE⊥AG于點E,BF⊥AG于點F.
(1)求證:DEBF=EF;
(2)若點G為CB延長線上一點,其余條件不變。請你在圖②中畫出圖形,寫出此時DE、BF、EF之間的數(shù)量關(guān)系(不需要證明);
【答案】(1)見解析(2)DE+BF=EF
【解析】
(1)本題的關(guān)鍵是求三角形ADE和BAF全等,以此來得出DE=AF=AE+EF=BE+EF,這兩個三角形中已知的條件有AD=BA,一組直角,關(guān)鍵是再找出一組對應(yīng)角相等,可通過證明∠DAF和∠ABF來實現(xiàn).(通過平行和等角的余角相等來證得)
(2)方法同(1)還是正三角形ADE和BAF全等,得出DE=AF,BF=AE,只不過本題的結(jié)論是DE+BF=EF
(1)證明:∵四邊形ABCD是正方形,BF⊥AG,
DE⊥AG,
∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°
∴∠BAF=∠ADE
∴△ABF≌△DAE
∴BF=AE, AF=DE
∴DE-BF=AF-AE=EF
(2)如圖,DE+BF=EF
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E,F分別是AD,BC上的點,且DE=BF,AC⊥EF.
(1)求證:四邊形AECF是菱形
(2)若AB=6,BC=10,F為BC中點,求四邊形AECF的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線CD⊥AB于點O,∠EOF=90°,射線OP平分∠COF.
(1)如圖1,∠EOF在直線CD的右側(cè):
①若∠COE=30°,求∠BOF和∠POE的度數(shù);
②請判斷∠POE與∠BOP之間存在怎樣的數(shù)量關(guān)系?并說明理由.
(2)如圖2,∠EOF在直線CD的左側(cè),且點E在點F的下方:
①請直接寫出∠POE與∠BOP之間的數(shù)量關(guān)系;
②請直接寫出∠POE與∠DOP之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中,正確的個數(shù)有( )
①-a一定是負數(shù);②|-a|一定是正數(shù);③倒數(shù)等于它本身的數(shù)是±1;
④絕對值等于它本身的數(shù)是1;⑤兩個有理數(shù)的和一定大于其中每一個加數(shù);⑥若 ,則a=b.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),與y軸相交于點C,動點M在線段OA和射線AC上運動。
(1)求直線AB的解析式;
(2)若△OMC的面積是△OAC的面積的,請直接寫出此時點M的坐標 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,對稱軸交BE于點F,點D,E的坐標分別為(3,0),(0,1).
(1)求拋物線的解析式;
(2)猜想△EDB的形狀并加以證明;
(3)點M在對稱軸右側(cè)的拋物線上,點N在x軸上,請問是否存在以點A,F(xiàn),M,N為頂點的四邊形是平行四邊形?若存在,請求出所有符合條件的點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進一批LED燈泡與普通白熾燈炮,其進價與標價如下表,該商場購進LED燈泡與普通白熾燈炮共300個,LED燈泡按標價進行銷售,而普通白熾燈炮按標價打九折銷售,銷售完這批燈泡后可以獲利3200元。
(1)求該商場購進LED燈泡與普通白熾燈泡的數(shù)量分別為多少個?
(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進兩種燈泡120個,并在不打折的情況下銷售完,若銷售完這批燈泡的獲利不超過總進貨價的28%,則最多購進LED燈泡多少個?
LED燈泡 | 普通白熾燈泡 | |
進價(元) | 45 | 25 |
標價(元) | 60 | 30 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某氣球內(nèi)充滿一定質(zhì)量的氣體,當溫度不變時,氣球內(nèi)氣體的氣壓p(kPa)是氣體體積V(m3)的反比例函數(shù),其圖象如圖所示.
(1)寫出這一函數(shù)的表達式.
(2)當氣體體積為1 m3時,氣壓是多少?
(3)當氣球內(nèi)的氣壓大于140 kPa時,氣球?qū)⒈?/span>,為了安全考慮,氣體的體積應(yīng)不小于多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com