精英家教網 > 初中數學 > 題目詳情
精英家教網已知:如圖,點E是AD上一點,AB=AC,如果AD是∠BAC的平分線.求證:EA是∠BEC的平分線.
分析:要證EA是∠BEC的平分線,需證∠BEA=∠CEA,而要證∠BEA=∠CEA只要證明△ABE?△ACE即可,要證△ABE?△ACE,已知AB=AC,AE=AE,再由AD是∠BAC的平分線可得∠BAE=∠CAE,此題可證.
解答:證明:因為AD是∠BAC的平分線,
所以∠BAE=∠CAE.
在△ABE與△ACE中,
AB=AC,
∠BAE=∠CAE,
AE=AE,
所以△ABE≌△ACE.
所以∠BEA=∠CEA.
所以EA是∠BEC的平分線.
點評:本題考查了全等三角形的判定和性質;三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主,判定兩個三角形全等,先根據已知條件或求證的結論確定三角形,然后再根據三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:如圖,點P是平行四邊形ABCD的邊DC上一點,且AP和BP分別平分∠DAB和∠C精英家教網BA.
(1)求證:AP⊥PB;
(2)如果AD=5,AP=8,求△APB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,點O是等腰直角△ABC斜邊AB的中點,D為BC邊上任意一點.
操作:在圖中作OE⊥OD交AC于E,連接DE.
問題:(1)觀察并猜測,無論∠DOE繞著點O旋轉到任何位置,OD和OE始終有何數量關系?(直接寫出答案)
 

(2)如圖所示,若BD=2,AE=4,求△DOE的面積.
(說明:如果經過思考分析,沒有找到解決(2)中的問題的方法,請直接驗證(1)中猜測的結論)

查看答案和解析>>

科目:初中數學 來源: 題型:

10、已知:如圖,點P是正方形ABCD的對角線AC上的一個動點(A、C除外),作PE⊥AB于點E,作PF⊥BC于點F,設正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數關系的是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,點O是四邊形BCED外接圓的圓心,點O在BC上,點A在CB的延長線上,且∠AD精英家教網B=∠DEB,EF⊥BC于點F,交⊙O于點M,EM=2
5

(1)求證:AD是⊙O的切線;
(2)若弧BM上有一動點P,且sin∠CPM=
2
3
,求⊙O直徑的長;
(3)在(2)的條件下,如果DE=
14
,求tan∠DBE的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

25、已知:如圖,點D是△ABC的邊AC上的一點,過點D作DE⊥AB,DF⊥BC,E、F為垂足,再過點D作DG∥AB,交BC于點G,且DE=DF.
(1)求證:DG=BG;
(2)求證:BD垂直平分EF.

查看答案和解析>>

同步練習冊答案