20.(1)如圖(1),BD平分∠ABC,DE∥BC,且AE=BE,求證:AB=BC;
(2)如圖(2),∠1=∠2,∠3=∠4,EF過點(diǎn)O,且EF∥BC,求證:EF=BE+CF;
(3)如圖(3),∠1=∠2,∠3=∠4,EF過點(diǎn)O,且EF∥BC,求證:EF=BE-CF.

分析 (1)欲證明AB=BC,只要證明∠A=∠C即可.
(2)欲證明EF=BE+CF,只要證明EO=EB,F(xiàn)O=FC即可.
(3)欲證明EF=BE-CF,只要證明EO=EB,F(xiàn)O=FC即可.

解答 證明:(1)如圖1中,∵DE∥BC,
∴∠EDB=∠DBC,∠ADE=∠C
∵BD平分∠EBC,
∴∠DBC=∠DBE,
∴∠EDB=∠EBD,
∴EB=ED,∵AE=BE,
∴EA=ED,
∴∠A=∠EDA,
∴∠A=∠C,
∴BA=BC.

(2)如圖2中,∵EF∥BC,
∴∠EOB=∠2,∠FOC=∠3,
∵∠1=∠2,∠3=∠4,
∴∠1=∠EOB,∠4=∠FOC,
∴EO=EB,F(xiàn)O=FC,
∴EF=EO+OF=EB+CF.

(3)如圖3中,∵EF∥BC,
∴∠EOB=∠2,∠FOC=∠3,
∵∠1=∠2,∠3=∠4,
∴∠1=∠EOB,∠4=∠FOC,
∴EO=EB,F(xiàn)O=FC,
∴EF=EO-OF=EB-CF.

點(diǎn)評(píng) 本題考查等腰三角形的判定和性質(zhì)、平行線的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用等腰三角形的判定解決問題,屬于中考?碱}型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,已知點(diǎn)A,B,C在⊙O上,AC∥OB,∠BOC=40°,則∠ABO=(  )
A.40°B.30°C.20°D.10°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.若a1,a2,a3,…,a2014,a2015均為正數(shù),M=(a1+a2+…+a2014)•(a2+a3+…+a2015),又N=(a1+a2+…+a2015)•(a2+a3+…+a2014),則M與N的大小關(guān)系是( 。
A.M=NB.M<NC.M>ND.無法比較

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.課間,頑皮的小剛拿著老師的等腰直角三角板放在黑板上畫好了的平面直角坐標(biāo)系內(nèi)(如圖),已知直角頂點(diǎn)H的坐標(biāo)為(0,1),另一個(gè)頂點(diǎn)G的坐標(biāo)為(4,4),則點(diǎn)K的坐標(biāo)為(3,-3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,已知△ABC中,∠C=90°,AB=5cm,AC=3cm,BC=4cm,AD是∠CAB的平分線,與BC交于D,DE⊥AB于E,則
(1)圖中與線段AC相等的線段是AE;
(2)與線段CD相等的線段是DE;
(3)△DEB的周長(zhǎng)為4cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.如圖,點(diǎn)D、E分別在AB、AC上,AD=AE,BD=CE.若∠BDC=80°,則∠AEB=100°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線y=2x2-4x+a(a<0)與y軸相交于點(diǎn)A,頂點(diǎn)M,直線y=$\frac{1}{2}$x-a分別與x軸、y軸相交于B、C兩點(diǎn),并且與直線AM相交于點(diǎn)N.

(1)填空:試用含a的代數(shù)式分別表示點(diǎn)M與N的坐標(biāo),則M(1,a-2),N($\frac{4}{5}$a,-$\frac{3}{5}$a);
(2)如圖1,將△NAC沿y軸翻折,若點(diǎn)N的對(duì)應(yīng)點(diǎn)N′恰好落在拋物線上,AN′與x軸交于點(diǎn)D,連接CD,求a的值和四邊形ADCN的面積;
(3)在拋物線y=2x2-4x+a(a<0)上是否存在一點(diǎn)P,使得以P、A、C、N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知∠COB=2∠AOC,OD平分∠AOB,∠AOC=20°,求∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系中,A(a,0),B(0,b),且a,b滿足$\sqrt{-(a+2)^{2}}$-(b-6)2=0.
(1)求OA、0B的長(zhǎng)度;
(2)若P從點(diǎn)B出發(fā)沿著射線BO方向運(yùn)動(dòng)(點(diǎn)P不與原點(diǎn)重合),速度為每秒2個(gè)單位長(zhǎng)度,連接AP,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t,△AOP的面積為S.請(qǐng)你用含t的式子表示S.
(3)在(2)的條件下,點(diǎn)Q從A點(diǎn)沿x軸正方向運(yùn)動(dòng),點(diǎn)Q與點(diǎn)P同時(shí)運(yùn)動(dòng),Q點(diǎn)速度為每秒1個(gè)單位長(zhǎng)度;當(dāng)S=4時(shí),求△APQ與以A、B、P、Q為頂點(diǎn)的四邊形的面積之比的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案