【題目】如圖,AB=12cm,點(diǎn)C是線段AB上的一點(diǎn),BC=2AC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向右運(yùn)動(dòng),到達(dá)點(diǎn)B后立即返回,以3cm/s的速度向左運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向右運(yùn)動(dòng).設(shè)它們同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為ts.當(dāng)點(diǎn)P與點(diǎn)Q第二次重合時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng).
(1)AC=__cm,BC=__cm;
(2)當(dāng)t為何值時(shí),AP=PQ;
(3)當(dāng)t為何值時(shí),PQ=1cm.
【答案】 4 8
【解析】試題分析:(1)由于AB=12cm,點(diǎn)C是線段AB上的一點(diǎn),BC=2AC,則AC+BC=3AC=AB=12cm,依此即可求解;
(2)分別表示出AP、PQ,然后根據(jù)等量關(guān)系AP=PQ列出方程求解即可;
(3)分相遇前、相遇后以及到達(dá)B點(diǎn)返回后相距1cm四種情況列出方程求解即可.
試題解析:(1)∵AB=12cm,點(diǎn)C是線段AB上的一點(diǎn),BC=2AC,
∴AC+BC=3AC=AB=12cm,
∴AC=4cm,BC=8cm;
(2)由題意可知:AP=3t,PQ=4﹣(3t﹣t),
則3t=4﹣(3t﹣t),
解得:t=.
答:當(dāng)t=時(shí),AP=PQ.
(3)∵點(diǎn)P、Q相距的路程為1cm,
∴(4+t)﹣3t=1(相遇前)或3t﹣(4+t)=1(第一次相遇后),
解得t=或t=,
當(dāng)?shù)竭_(dá)B點(diǎn)時(shí),第一次相遇后點(diǎn)P、Q相距的路程為1cm,
3t+4+t=12+12﹣1
解得:t=.
答:當(dāng)t為, , 時(shí),PQ=1cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(滿分8分)如圖,某教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面的夾角是45°時(shí),教學(xué)樓頂A在地面上的影子F與墻角C的距離為18m (B、F、C在一條直線上).
求教學(xué)樓AB的高度.(結(jié)果保留整數(shù))
(參考數(shù)據(jù):sin22°0.37,cos22°0.93,tan22°0.40 .)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,M是邊AB的中點(diǎn),D是邊BC延長(zhǎng)線上的一點(diǎn),且CD= BC,作DN∥CM交AC于點(diǎn)N.求證:四邊形MCDN是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB:y=kx﹣2與y軸相交于點(diǎn)A,與反比例函數(shù)y= 在第一象限內(nèi)的圖象相交于點(diǎn)B(m,2).
(1)求直線AB的表達(dá)式;
(2)將直線AB向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn)C,且△ABC的面積為18,求平移后的直線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某航空母艦的滿載排水量為60900噸.將數(shù)60900用科學(xué)記數(shù)法表示為( 。
A. 0.609×105 B. 6.09×104 C. 60.9×103 D. 609×102
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在綜合實(shí)踐課上,小聰所在小組要測(cè)量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點(diǎn)A處用測(cè)角儀測(cè)得河對(duì)岸小樹C位于東北方向,然后沿河岸走了30米,到達(dá)B處,測(cè)得河對(duì)岸電線桿D位于北偏東30°方向,此時(shí),其他同學(xué)測(cè)得CD=10米.請(qǐng)根據(jù)這些數(shù)據(jù)求出河的寬度.(精確到0.1)(參考數(shù)據(jù): ≈1.414, ≈1.132)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩條直線被第三條直線所截,若∠1與∠2 是同旁內(nèi)角,且∠1=70,則 ( )
A. ∠2=70B. ∠2=110
C. ∠2=70或∠2=110D. ∠2的度數(shù)不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BD是矩形ABCD的對(duì)角線.
(1)用直尺和圓規(guī)作線段BD的垂直平分線,分別交AD、BC于E、F(保留作圖痕跡,不寫作法和證明).
(2)連結(jié)BE,DF,問(wèn)四邊形BEDF是什么四邊形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com