16、如圖,已知CD⊥AB,BE⊥AC,垂足分別為D、E,BE、CD交于點O,且AO平分∠BAC,那么圖中全等三角形共有
4
對.
分析:根據(jù)已知條件可以找出題目中有哪些相等的角以及線段,然后猜想可能全等的三角形,然后一一進行驗證.
解答:解:∵CD⊥AB,BE⊥AC,垂足分別為D、E,且AO平分∠BAC,
∴△ODA≌△OEA,
∴∠B=∠C,AD=AE,
∴△ADC≌△AEB,
∴AB=AC,
∴△OAC≌△OAB,
∴△COE≌△OBD.
故填4.
點評:本題考查了三角形全等的判定方法;提出猜想,驗證猜想是解決幾何問題的基本方法,做題時要注意從已知條件開始思考結(jié)合全等的判定方法逐一判斷,做到不重不漏,由易到難.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

11、如圖,已知CD∥AB,OE平分∠BOD,∠D=52°,求∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,已知CD⊥AB,BE⊥AC,垂足分別為D、E,BE、CD相交于點O,且AO平分∠BAC,那么圖中全等三角形共有( 。⿲Γ

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖,已知CD⊥AB,EF⊥AB,CD=EF,AF=BD,求證:OA=OB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、如圖,已知CD⊥AB,垂足為點D,BE⊥AC,垂足為點E,CD、BE相交于點O,則圖中與△BOD相似的三角形有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知CD∥AB,OE平分∠BOD,OE⊥OF,∠CDO=62°,求∠DOF的度數(shù).

查看答案和解析>>

同步練習冊答案