【題目】如圖,菱形ABCD的邊長為6,M、N分別是邊BC、CD上的點,且MC=2MB,ND=2NC,點P是對角線BD上一點,則PM+PN的最小值是

【答案】6
【解析】解:作M關(guān)于BD的對稱點M′交AB于M′,連接M′N交BD于P,
則M′N=PM+PN的最小值,
∵MC=2MB,ND=2NC,
∴BM=CN=2,
∴BM′=2,
∴BM′=CN,
∵BM′∥CN,
∴四邊形BCNM′是平行四邊形,
∴M′N=BC=6,
∴PM+PN的最小值=6,
所以答案是:6.
【考點精析】解答此題的關(guān)鍵在于理解菱形的性質(zhì)的相關(guān)知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線OP過Rt△ABC的邊AC、AB的中點M、N,AC=4cm,BC=4 cm,OM=3cm.射線OP上有一動點Q從點O出發(fā),沿射線OP以每秒1cm的速度向右移動,以Q為圓心,QM為半徑的圓,經(jīng)過t秒與BC、AB中的一邊所在的直線相切,請寫出t的所有可能值(單位:秒)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題

(1)

(2)(2x)2x4÷x

(3)

(4)

(5)(x﹣2)(2+x)﹣(2﹣x)(x﹣2)

(6)(6x4y2+8x3y4)÷2xy2﹣(﹣2xy)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】西瓜和甜瓜是新疆特色水果,小明的媽媽先購買了2千克西瓜和3千克甜瓜,共花費9元;后又購買了1千克西瓜和2千克甜瓜,共花費5.5元.(每次兩種水果的售價都不變)
(1)求兩種水果的售價分別是每千克多少元?
(2)如果還需購買兩種水果共12千克,要求甜瓜的數(shù)量不少于西瓜數(shù)量的兩倍,請設(shè)計一種購買方案,使所需總費用最低.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(0,4),B(2,0).

(1)求直線AB的函數(shù)解析式;
(2)已知點M是線段AB上一動點(不與點A、B重合),以M為頂點的拋物線y=(x﹣m)2+n與線段OA交于點C.
①求線段AC的長;(用含m的式子表示)
②是否存在某一時刻,使得△ACM與△AMO相似?若存在,求出此時m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,攔水壩的橫斷面為梯形ABCD,AB∥CD,壩頂寬DC為6米,壩高DG為2米,迎水坡BC的坡角為30°,壩底寬AB為(8+2 )米.
(1)求背水坡AD的坡度;
(2)為了加固攔水壩,需將水壩加高2米,并且保持壩頂寬度不變,迎水坡和背水坡的坡度也不變,求加高后壩底HB的寬度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察等式:① =1﹣ ;② = ;③ = ;④ = ,…
(1)試用字母n的等式表示出你發(fā)現(xiàn)的規(guī)律,并證明該等式成立;
(2)
+ + +…+ = . (直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)y= (a>0,a為常數(shù))和y= 在第一象限內(nèi)的圖象如圖所示,點M在y= 的圖象上,MC⊥x軸于點C,交y= 的圖象于點A;MD⊥y軸于點D,交y= 的圖象于點B,當點M在y= 的圖象上運動時,以下結(jié)論:①SODB=SOCA;②四邊形OAMB的面積不變;③當點A是MC的中點時,則點B是MD的中點.其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙、丁四人玩撲克牌游戲,他們先取出兩張紅心和兩張黑桃共四張撲克牌,洗勻后背面朝上放在桌面上,每人抽取其中一張,拿到相同顏色的即為游戲搭檔,現(xiàn)甲、乙兩人各抽取了一張,求兩人恰好成為游戲搭檔的概率.(請用“畫樹狀圖”或“列表”等方法寫出分析過程)

查看答案和解析>>

同步練習冊答案