【題目】如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點D,BC是⊙O的切線,E為BC的中點,連接BD、DE.
(1)求DE是⊙O的切線;
(2)設△CDE的面積為S1,四邊形ABED的面積為S2,若S2=5S1,求tan∠BAC的值;
(3)在(2)的條件下,連接AE,若⊙O的半徑為2,求AE的長.
【答案】(1)證明見解析;(2);(3).
【解析】
(1)連接OD,由圓周角定理就可得∠ADB=90°和∠CDB=90°,又由E為BC的中點可以得出DE=BE,進一步得到∠EDO=∠EBO,由等式的性質就可以得出∠ODE=90°即可證明;
(2)由S2=5S1,即△ADB的面積是△CDE面積的4倍,可得AD:CD=2:1,AD:BD=2,則可求tan∠BAC;
(3)由(2)的關系即可知AD:BD=2,在Rt△AEB中,運用勾股定理解答即可.
(1)證明:連接OD,
∴OD=OB
∴∠ODB=∠OBD.
∵AB是直徑,
∴∠ADB=90°,
∴∠CDB=90°.
∵E為BC的中點,
∴DE=BE,
∴∠EDB=∠EBD,
∴∠ODB+∠EDB=∠OBD+∠EBD,
即∠EDO=∠EBO.
∵BC是以AB為直徑的⊙O的切線,
∴AB⊥BC,
∴∠EBO=90°,
∴∠ODE=90°,
∴DE是⊙O的切線;
(2)解:∵S2=5S1,
∴S△ADB=2S△CDB,
∴=,
∵△BDC∽△ADB,
∴=,
∴DB2=ADDC,
∴ ,
∴tan∠BAC=;
(3)解:∵tan∠BAC=,
∴,得BC=AB=2 ,
∵E為BC的中點,
∴BE=BC=,
∴AE=.
科目:初中數(shù)學 來源: 題型:
【題目】有一項工程,乙隊單獨完成所需的時間是甲隊單獨完成所需時間的2倍,若兩隊合作4天后,剩下的工作甲單獨做還需要6天完成.
(1)求甲、乙兩隊單獨完成這項工程各需多少天;
(2)若甲隊每天的報酬是1萬元,乙隊每天的報酬是0.3萬元,要使完成這項工程時的總報酬不超過9.6萬元,甲隊最多可以工作多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某高中學校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級(1)班學生即將所穿校服型號情況進行摸底調(diào)查,并根據(jù)調(diào)查結果繪制如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6種型號).
根據(jù)以上信息,解答下列問題:
(1)該班共有多少名學生?
(2)在條形統(tǒng)計圖中,請把空缺部分補充完整;在扇形統(tǒng)計圖中,請計算185型校服所對應的扇形圓心角的大;
(3)求該班學生所穿校服型號的眾數(shù)和中位數(shù).如果該高中學校準備招收2000名高一新生,則估計需要準備多少套180型號的校服?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一副直角三角板如圖放置,其中BC=6,EF=8,把30°的三角板向右平移,使頂點B落在45°的三角板的斜邊DF上,則兩個三角板重疊部分(陰影部分)的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,CO的延長線交AB于點D,若BC=6,sin∠BAC=,則AC=_____,CD=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點,與y軸交于C、D兩點,點E為⊙G上一動點,CF⊥AE于F.當點E從點B出發(fā)順時針運動到點D時,點F所經(jīng)過的路徑長為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣9ax+18a的圖象與x軸交于A,B兩點(A在B的左側),圖象的頂點為C,直線AC交y軸于點D.
(1)連接BD,若∠BDO=∠CAB,求這個二次函數(shù)的表達式;
(2)是否存在以原點O為對稱軸的矩形CDEF?若存在,求出這個二次函數(shù)的表達式,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形,點在邊上,且,,垂足為,且交于點,與交于點,延長至,使,連接.有如下結論:①;②;③;④.上述結論中,所有正確結論的序號是( )
A. ①②B. ①③C. ①②③D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( 。
A. 主視圖不變,左視圖不變
B. 左視圖改變,俯視圖改變
C. 主視圖改變,俯視圖改變
D. 俯視圖不變,左視圖改變
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com