精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對角線AC為邊,按逆時針方向作矩形ABCD的相似矩形AB1C1C,再連接AC1 , 以對角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1 , …,按此規(guī)律繼續(xù)下去,則矩形ABnCnCn﹣1的面積為 .

【答案】
【解析】解:
∵四邊形ABCD是矩形,
∴AD⊥DC,
∴AC===
∵按逆時針方向作矩形ABCD的相似矩形AB1C1C,
∴矩形AB1C1C的邊長和矩形ABCD的邊長的比為:2
∴矩形AB1C1C的面積和矩形ABCD的面積的比5:4,
∵矩形ABCD的面積=2×1=2,
∴矩形AB1C1C的面積=
依此類推,矩形AB2C2C1的面積和矩形AB1C1C的面積的比5:4
∴矩形AB2C2C1的面積=
∴矩形AB3C3C2的面積=,
按此規(guī)律第n個矩形的面積為:
所以答案是:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,AD=6,點E、F分別在邊CD、AB上.

(1)若DE=BF,求證:四邊形AFCE是平行四邊形;
(2)若四邊形AFCE是菱形,求菱形AFCE的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】菱形ABCD中,兩條對角線AC,BD相交于點O,∠MON+∠BCD=180°,∠MON繞點O旋轉,射線OM交邊BC于點E,射線ON交邊DC于點F,連接EF.

(1)如圖1,當∠ABC=90°時,△OEF的形狀是;
(2)如圖2,當∠ABC=60°時,請判斷△OEF的形狀,并說明理由;
(3)在(1)的條件下,將∠MON的頂點移到AO的中點O′處,∠MO′N繞點O′旋轉,仍滿足∠MO′N+∠BCD=180°,射線O′M交直線BC于點E,射線O′N交直線CD于點F,當BC=4,且=時,直接寫出線段CE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數的圖象上,從左向右第3個正方形中的一個頂點A的坐標為(6,2),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn , 則第4個正方形的邊長是 , S3的值為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】開學初,小明到文具批發(fā)部一次性購買某種筆記本,該文具批發(fā)部規(guī)定:這種筆記本售價y(元/本)與購買數量x(本)之間的函數關系如圖所示.

(1)圖中線段AB所表示的實際意義是
(2)請直接寫出y與x之間的函數關系式;
(3)已知該文具批發(fā)部這種筆記本的進價是3元/本,若小明購買此種筆記本超過10本但不超過20本,那么小明購買多少本時,該文具批發(fā)部在這次買賣中所獲的利潤W(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明開了一家網店,進行社會實踐,計劃經銷甲、乙兩種商品.若甲商品每件利潤10元,乙商品每件利潤20元,則每周能賣出甲商品40件,乙商品20件.經調查,甲、乙兩種商品零售單價分別每降價1元,這兩種商品每周可各多銷售10件.為了提高銷售量,小明決定把甲、乙兩種商品的零售單價都降價x元.
(1)直接寫出甲、乙兩種商品每周的銷售量y(件)與降價x(元)之間的函數關系式:y= , y=;
(2)求出小明每周銷售甲、乙兩種商品獲得的總利潤W(元)與降價x(元)之間的函數關系式?如果每周甲商品的銷售量不低于乙商品的銷售量的,那么當x定為多少元時,才能使小明每周銷售甲、乙兩種商品獲得的總利潤最大?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了培養(yǎng)學生的閱讀習慣,某校開展了“讀好書,助成長”系列活動,并準備購置一批圖書,購書前,對學生喜歡閱讀的圖書類型進行了抽樣調查,并將調查數據繪制成兩幅不完整的統計圖,如圖所示,根據統計圖所提供的信息,回答下列問題:

(1)本次調查共抽查了名學生,兩幅統計圖中的m= , n=
(2)已知該校共有960名學生,請估計該校喜歡閱讀“A”類圖書的學生約有多少人?
(3)學校要舉辦讀書知識競賽,七年(1)班要在班級優(yōu)勝者2男1女中隨機選送2人參賽,求選送的兩名參賽同學為1男1女的概率是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(1,4),B(4,2),C(3,5)(每個方格的邊長均為1個單位長度).

(1)請畫出△A1B1C1 , 使△A1B1C1與△ABC關于x軸對稱;
(2)將△ABC繞點O逆時針旋轉90°,畫出旋轉后得到的△A2B2C2 , 并直接寫出點B旋轉到點B2所經過的路徑長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知函數f(x)= 若對于任意兩個不等實數x1 , x2 , 都有 >1成立,則實數a的取值范圍是(
A.[1,3)
B.[ ,3)
C.[0,4)
D.[ ,4)

查看答案和解析>>

同步練習冊答案