(2001•黑龍江)用兩種方法證明等腰梯形判定定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形(要求:畫出圖形,寫出已知、求證、證明).
【答案】分析:第一種方法:分別過點(diǎn)A、B作AE⊥DC于點(diǎn)E,BF⊥DC于點(diǎn)F,由已知可得四邊形ABFE是矩形,從而得到AE=BF,已知有兩組角相等,則利用AAS判定△ADE≌△BCF,從而得到AD=BC,即推出了梯形ABCD是等腰梯形;
第二種方法:過點(diǎn)B作BE∥AD,根據(jù)已知可得到四邊形ABED是平行四邊形,從而得到AD=BE,又因?yàn)锽E∥AD,∠D=∠C,從而可得到BE=BC=AD,從而推出了梯形ABCD是等腰梯形.
解答:已知:梯形ABCD中,∠D=∠C,AB∥DC,
求證:梯形ABCD是等腰梯形.
證明:
證法一:如圖,分別過點(diǎn)A、B作AE⊥DC于點(diǎn)E,BF⊥DC于點(diǎn)F,
∵AE⊥DC,BF⊥DC,
∴∠AED=∠BFC=90°,AE∥BF,
∵AB∥DC,
∴四邊形ABFE是矩形,
∴AE=BF.
∵∠D=∠C,
∴△ADE≌△BCF.
∴AD=BC.
∴梯形ABCD是等腰梯形.

證法二:過點(diǎn)B作BE∥AD,
∵AB∥DC,BE∥AD,
∴四邊形ABED是平行四邊形.
∴AD=BE.
∵BE∥AD,
∴∠D=∠BEC.
∵∠D=∠C,
∴∠BEC=∠C.
∴BE=BC.
∴BC=AD.
∴梯形ABCD是等腰梯形.
點(diǎn)評:此題主要考查學(xué)生對等腰梯形判定定理的理解及掌握,此題的關(guān)鍵是輔助線的添加.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2001•黑龍江)如圖,在同一直角坐標(biāo)系內(nèi),直線l1:y=(k-2)x+k,和l2:y=kx的位置可能是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2001•黑龍江)如圖,在平行四邊形ABCD中,AB=4cm,BC=1cm,E是CD邊上一動(dòng)點(diǎn),AE、BC的延長線交于點(diǎn)F.設(shè)DE=x(cm),BF=y(cm).
(1)求y(cm)與x(cm)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)畫出此函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:解答題

(2001•黑龍江)如圖,直徑為13的⊙O′經(jīng)過原點(diǎn)O,并且與x軸、y軸分別交于A、B兩點(diǎn),線段OA、OB(OA>OB)的長分別是方程x2+kx+60=0的兩根.
(1)求線段OA、OB的長;
(2)已知點(diǎn)C在劣弧OA上,連接BC交OA于D,當(dāng)OC2=CD•CB時(shí),求C點(diǎn)的坐標(biāo);
(3)在(2)問的條件下,在⊙O′上是否存在點(diǎn)P,使S△POD=S△ABD?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《四邊形》(03)(解析版) 題型:解答題

(2001•黑龍江)如圖,直徑為13的⊙O′經(jīng)過原點(diǎn)O,并且與x軸、y軸分別交于A、B兩點(diǎn),線段OA、OB(OA>OB)的長分別是方程x2+kx+60=0的兩根.
(1)求線段OA、OB的長;
(2)已知點(diǎn)C在劣弧OA上,連接BC交OA于D,當(dāng)OC2=CD•CB時(shí),求C點(diǎn)的坐標(biāo);
(3)在(2)問的條件下,在⊙O′上是否存在點(diǎn)P,使S△POD=S△ABD?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2001•黑龍江)拋物線y=ax2+bx+c經(jīng)過點(diǎn)(1,0),(-1,-6),(2,6),則該拋物線與y軸交點(diǎn)的縱坐標(biāo)為   

查看答案和解析>>

同步練習(xí)冊答案